
Temporary Roles –

An Explicit, User-Specified Organizational Model

Oliver Creighton, Christoph Angerer, Timo Wolf, Allen H. Dutoit, Bernd Bruegge
Technische Universität München

{creighto,angerer,wolft,dutoit,bruegge}@cs.tum.edu

26th August 2004

Abstract

A major roadblock for fundamentally secure computing environments is the limited ability of indiviual users
to specify personal data distribution. This is in part due to a lack of a consistent, complete and explicit way to
define access rights on an appropriate level. A key property that is missing in current models are the dynamic
aspects of evolving organizations. We propose a directed graph-based model for making organizational and
personal relationships, particularly their durations, explicit. By sharing this data across relevant support tools
via a centralized directory service, we expect informational self-determination of users to increase. The key
benefit of a shared, explicit model lies in the ability to support consistent authorization across a diversity of
tools. The necessary security concepts are explained in detail and substantiated by an example of use in the
field of software development.

1 Introduction

Privacy and security concerns are increasingly critical
issues in information technology. With more computer
users with divergent backgrounds and a variety of soft-
ware tools, fundamentally secure yet easy-to-use con-
cepts are required. In our research we focus on an ap-
plication domain that is technology-adopting and de-
manding, that of software development. It provides
fertile ground for security measures, as most relevant
artifacts are entirely digital.

A software engineering project requires several dif-
ferent tools: communication tools, such as email clients
or web-based bulletin boards, workflow applications
for process enactment, and CASE tools such as inte-
grated development environments. Many depend on
some kind of model of the project organization to au-
thorize access. Organizational models range from tradi-
tional name password pairs (only distinguishing if you
are part of the organization or not), to more complex
models representing teams, roles, and resources. The
tools have their own scheme to store the models, conse-
quently, much of the organizational information is du-

plicated across tools and development sites. This leads
to problems of inaccuracy, redundancy, and incomplete-
ness. In the past these were accepted by developers in
local environments, as they could be resolved through
informal communication, and the risk of exposing infor-
mation to non-authorized parties was relatively low, as
the worst case was still contained within the company.

The problems, however, have become harder in a
distributed environment: If the organization is project-
based, change occurs frequently and spontaneously, e.g.
allocating more people to the development of one prod-
uct, where some of its subsystems are maintained by
other teams. Now the set of people who are users of
these subsystems has changed, potentially creating con-
flicts of interest and requiring more changes in the or-
ganization. Updating this relational information in all
associated tools across potentially several development
sites quickly becomes too much of an effort for any or-
ganization. The frequent solution, as for example found
in many open-source projects, is therefore to not store
this information explicitly in the first place. When the

1

access model requires too much effort to update, the
project simply stops controlling access, thereby giving
access to a larger set of people than appropriate (in the
worse case, everybody). In general, distributed orga-
nizations suffer from reduced informal communication,
which in turn results in the need to make implicit orga-
nizational knowledge explicit [6, 10]. Ideally, all infor-
mation about the organization should be made explicit
for every artifact in every tool, but be defined in a way
that acknowledges and supports the high dynamics of
evolving organizations, i.e. still be straightforward and
clear to view and modify for anyone involved.

1.1 Problem Summary

The key issue that we address in this paper is how to
maintain a consistent and accurate access model while
minimizing inconsistencies across tools and sites. If
more knowledge about the organization (e.g., “Who
is a registered programmer, tester, or maintainer for
what?”) is made explicit and shared among many tools,
the value of this knowledge will increase. Moreover, if
all project participants can update the data that is rel-
evant to them, the chance that they will update this
knowledge increases accordingly. Hence, we propose to
employ a central project directory service — apart from
the traditional uses of authentication of users and stor-
age of user-specific attributes (e.g., email address, web
home page) — for team compositions, roles, and access
control lists. This project directory can be conveniently
accessed by any tool in the project for storing and re-
trieving organizational knowledge, across sites, tools,
and users. Our approach contributes to distilling all
organizational knowledge that is relevant for authoriza-
tion in order to achieve personal administrative rights.

We identify five main properties that such integra-
tion efforts should expose: Solutions should be

open: Several entry levels of abstraction (from ba-
sic access protocols such as LDAP or HTTP to higher
levels of abstraction such as a Java API) should be pro-
vided to allow for a potentially unlimited set of tools
to use the organizational model.

encapsulated: All integrated components (the tools
and infrastructure extensions) should be exchangable
by using standardized interfaces and protocols.

secure: Distribution and storage of data should be
hard to eavesdrop, corrupt or forge, making it neces-
sary to use encryption for network communication and
long-term storage.

privacy-aware: Access to personal data should be
definable by users, following the informational self-de-

termination principle [13]. This also means that setting
what can be done with personal data must be straight-
forward and application-specific.

scalable: Data integrity only needs to be assured
logically, but there is no need for a single directory to
be hosted on a single server. In fact, by enabling users
to specify organizational data themselves, we envision
that components of the directory should be globally dis-
tributed across all participating nodes of a peer-to-peer
network.

1.2 Related Work

Our approach is somewhat simpler than the well-known
notion of large-scale directories [4] or role-based access
control (RBAC) [14, 11, 9], as we only focus on an
abstract concept of resources and their relationships.
RBAC in principle maps permissions to users via roles.
This only works well, though, for long-term role assign-
ments and if the permissions model can be defined a
priori. In the case of real-life computing environments,
however, this is hard to do as these tend to be highly
volatile. Work done to extend RBAC with a temporal
component as done by Bertino et.al. [1] relies on tem-
porarily enabling or disabling the permissions of entire
roles, which still requires to define role permissions and
sophisticated conflict-checking.

This work is based on the firm belief in informa-
tional self-determination as defined by Rehm in [13]
as the right to protect “the individual against unlim-
ited investigation, storage, use and transmission of per-
sonal data. As an aspect of the general right to per-
sonhood, it encompasses the right of the individual to
decide for himself, {. . . } when and within what limits
facts about his personal life shall be disclosed. This
right would be infringed if the automatic processing
of data could result in the reconstruction or release of
the personality profiles of particular individuals.” This
is achieved by allowing users to explicitly specify who
can do what with their personal data in an authorita-
tive organizational model. Moreover, this principle is
anchored in German law and commits organizations to
transparency into their electronic data processing poli-
cies.

In researching globally distributed software
projects, we have taken the approach of “learning-
by-doing.” We have taught several global software
engineering (GlobalSE) project courses in which stu-
dent teams of our university collaborated on developing
a system for a single industrial client with students of
Carnegie-Mellon University in Pittsburgh, PA and the

2

University of Otago, Dunedin, New Zealand [3, 7].
From the necessity of supporting these multiple orga-
nizations in our projects we learned the importance of
distributed administration first-hand.

The infrastructure that we custom-built for these
projects included communication tools such as Lo-
tus Notes bulletin boards, a requirements management
tool [8], an awareness infrastructure [12], and a work-
flow tool for process enactment. This enabled us to
evaluate the applicability of the proposed model in a
real-life software development community [5].

2 Security Concepts

This section introduces all the fundamental concepts of
our approach. Real-life examples for these concepts can
be found — in the same order — in the following sec-
tion, which provides a walk-through of all the concepts
by means of an illustrative scenario.

The typical use of a centralized directory service in
organizations is to provide a phonebook (the “White
Pages” of the organization) containing basic contact in-
formation for every employee. While this is a useful and
important service in itself, it is not sufficient when it
comes to supporting sophisticated authorization mod-
els for different resources. Providing information about
the properties of each employee, in an organized fashion
that makes it straightforward to look for related work
areas, would be another use (the “Yellow Pages” of the
organization).

But even if a central directory service for these pur-
poses is installed, and is provided by standard access
mechanisms such as LDAP, the benefit is not yet reach-
ing the needs of a simple but powerful and, of course,
secure management of access rights on resources. To
provide integrated user and resource management, it
is necessary to first make the organizational model ex-
plicit and then to share it across tools and sites.

Generally, a directory for managing project meta-
data must deal with different kinds of Resources related
by temporary Relationships characterized by roles. The
following figure depicts a top-level view for this model:

Name�

Resource

Role�
Start�
End�
IsTransitive�

Relationship�

*�

-source�1�

-target�

1�

*�

Person� Document� ...�

Figure 1: Top-Level View

Each Resource can be identified by a unique Name.
Its subclasses further represent different kinds of re-
sources, such as persons, documents, or projects. A
Relationship connects exactly two Resource instances for
a certain period of time, from Start to End. The Role
of the Relationship represents the function of the tar-
get in respect to the source resource. The IsTransitive
attribute specifies if target resources of succeeding re-
lationships should indirectly play this Role, too. The
sum of all subclassed Resources and all possible Roles
is called the schema of the organizational model of the
directory.

This simple model in mind, we will describe several
security concepts which a directory in our opinion must
implement to meet the requirements mentioned above.
For describing these concepts, we model instances of
Resources and Relationships as a directed graph where
nodes represent resources and edges between nodes rep-
resent relationships.

2.1 Role-assignment of Resources

The roles that a resource A plays for another resource
B are defined by the relationships between them. That
is, if A plays role z for B, a relationship z going from
B to A must exist (an edge z leads from node B to
A within the graph: B

z−→ A). A (directed) Relation-
ship connects two resources and its Role-attribute rep-
resents the function of the target resource in respect to
the source resource. For example, if the two resources
are Alice and Message and Alice is an author for the
Message, we would get Message author−−−−→ Alice.

A note about transitivity: A resource could also
play a certain role for another resource indirectly, which

3

is important for grouping similar resources together.
The resource A is also in role z for resource B, when a
path of the form: B

z−→ A1
t1−→ · · · tn−1−−−→ An

tn−→ A ex-
ists (n ∈ N, A, An, B are resources, and z, ti ∈ T ⊆ R.
T is the subset of all existing relationships R which are
defined to be transitive, that is, they pass role member-
ships of their source to their target). The direction of
a relationship is important for gathering the effective
role a resource plays for another resource across several
relationships.

2.2 Creation of Relationships

As described before, only the first relationship of a
transitive path defines the effective role any related re-
source A plays for its source resource B. When roles
are used for modeling authorization on resources, it
must therefore be possible to control who is allowed to
create relationships starting from B. In other words,
only resources who are responsible for B should be
allowed to create new relationships starting from B.
These are all resources A who are themselves in a cer-
tain administrative role admin for B, that is, a path
B

admin−−−−→ A1
t1−→ · · · tn−1−−−→ An

tn−→ A, where n ∈ N,
A,An, B are resources, and ti ∈ T ⊆ R, exists.

2.3 Creation of Resources

Within the directory, resources can not simply be “cre-
ated”. A new resource is “born” within a certain role,
that is, it becomes the target of an initial relationship
originated from another resource (the origin resource).
Each resource is associated with a unique name. The
name could be composed of the name of the origin
resource and the name of the new resource. Similar
to transitive relationships described above, only some
roles, the origin roles, can be used to “give birth” to
resources.

2.4 Expiration of Resources

As in real life, a resource does not expire arbitrar-
ily at some “expiration date”. Instead, the point in
time when a resource expires is defined by all relation-
ships which lead to this resource. A resource expires
when the last relationship becomes invalid. In turn, a
relationship becomes invalid either when its end-date
is reached or when the resource at the relationship
source expires. If no end-date is given, the relation-
ship (and thus its target resource) is valid, at least as

long as the relationship source is alive. One special
Root resource exists, which represents the directory as
a whole. The concrete expiration date for a resource
A is thus defined as the “latest of the earliest expira-
tion dates of all paths from Root to A” or formally as:
maxDate(∪i≥0minDate(pi)), where pi is a single path
from Root to A (Root

∗−→ A ∈ P) and 0 ≤ i ≤ |P | ∈ N.
Similar to transitive and origin roles, only preserving
relationships P are taken into consideration for com-
puting the expiration date.

A description for computing the expiration date
would consist of “chains” and “weights”. Each resource
is seen as a weight attached to the directory through
several chains, where a single chain link represents a
relationship (respectively its end-date). A whole chain
tears apart, when the weakest chain link breaks (the
earliest date of the chain is exceeded). The weakest
chain link of the remaining chain (which still attaches
the weight to the directory) then is the “strongest link
of the weakest links of all chains” and represents the
expiration date of its attached weight. Applied to our
example of use, envision a person who is member of sev-
eral projects. His login is valid as long as he is involved
in at least one active project.

This mechanism is similar to memory allocation sys-
tems that keep track of chains of reference before know-
ing when segments are free to be garbage collected, but
this has to our knowledge not been applied to an orga-
nizational model before.

2.5 Event Management

Most directories implement a static data-pool which ex-
ternal applications can query via a certain remote pro-
tocol, such as LDAP. However, directories that man-
age authorization on resources of systems, which im-
plement their own security model, like file systems or
CVS repositories, must additionally provide a mech-
anism for handling directory internal events and pub-
lishing them to these systems. The component diagram
in Figure 2 on the following page visualizes a possible
event handling mechanism to notify existing compon-
tents when the model changes.

Such an event handler interface must contain
callback-operations for managing the life-cycle of re-
source objects. These operations are called by an Event-
Manager component, when objects are created, deleted,
or changed. Additionally, a daily event could trigger
the expiration of relationships. For scaleability reasons,
the EventManager component could use descriptions of

4

Project Directory�

`�

External Application 'A'�

Database�
ResourceModel�

«accesses»�

via LDAP, RMI, ...�

some API� EventHandler for 'A'�

«accesses»� ResourceHandlerInterface�

EventManager�

«notifies»�HandlerDescription�

«uses»�

«notifies»�

Figure 2: Event Handling Mechanism

existing handlers for determining which handlers han-
dle what resources and how an instance could be cre-
ated.

Concrete handlers can be used for realizing various
tasks, for example changing access rights on file sys-
tem level. Another important task of such handlers
would be to inform people about changes of the direc-
tory by e-mail, like informing an administrator when a
new person has been created or informing a user when
his relationship to a certain group is about to expire.
Of course, event handlers could act upon these changes
by modifying attributes of affected relationships and
resources directly.

3 Illustrative Examples

When realizing the security concepts described above,
directory services are predestined to provide a service
for authentication, too. Only if they verify the identity
of users can it be assured that applications controlling
access to specific resources provide verification of access
(authorization) for users.

The instance diagram in Figure 3 on page 8 de-
picts a snapshot of several concrete resources and their
relationships as it may be required during a software
development project.

The UIDevelopers group, responsible for developing
user interfaces, consists of Alice and Bob. A cross-
functional [2] team called QualityAssurance (QA) is
intended to supervise the progress of all documents
without interfering with the developers. This team is
formed by Charles and Dan. During the planning phase
of the project, the project managers decided that a
UIStyleGuide document should be written by the de-
velopers and reviewed by the QA team. Additionally,
the personal Diary of Bob and his private Buddies-list
are shown.

Roles of Resources: The relationships, respec-
tively their roles, define the function a resource plays
for another for a certain period of time. Our example
directory defines three special security roles between
persons, groups or other resources for managing ac-
cess: Reader, Author, and Administrator. As an ex-
ample, Bob decided for some reason, that all of his

5

buddies are allowed to read his personal diary between
February 10th and March 1st. Because he took Dan
up into his buddies-list for a limited time, Dan is in
role Reader for the diary between February 15th (the
start of the Buddy relationship) and March 1st (the end
of the Reader relationship). In other words, a path,
following the relationships between the diary and Dan
where the first role is Reader, exists within that period.
Note, that this is not true for Bob’s buddies-list and
therefore Dan is not allowed to view this list.

Role Changes over Time: Our example also
shows how one would model a source code promotion
strategy, where after the code freeze deadline of Febru-
ary 15th, developers can no longer modify the subsys-
tem, as it has been handed over to the quality assurance
(QA) group for testing. The QA group’s deadline for
testing is in our example March 1st, after which de-
velopers are again allowed to modify the subsystem,
but the QA people have no access until the next cy-
cle, starting April 15th. For the entire duration of
the project, developers are allowed to read source code;
note that Relationship objects can exist multiple times
for the same time span and Resource combination, only
varying in Role.

Creation of Relationships: A relationship be-
tween two resources can be created by any person, who
is in role Administrator for the resource where the re-
lationship starts. That is, Bob is allowed to add more
buddies to his buddies-list and grant access to his di-
ary. Consider Alice to be curious about reading her col-
leagues diary. Because she is in role Administrator for
her own data, she creates a relationship Reader, start-
ing at Alice and pointing to Bob’s Diary. Note, that this
relationship does not invalidate Bob’s granted rights,
because the relationship points into the wrong direction
(but the diary could read Alice...). Alice has no possi-
bility to access the document until Bob allows her to.
This distributed administration, that is, the possibility
of every user to control precisely who can access his
own resources, not only exonerates administrators, but
increases the informational self-determination of each
user.

Creation of Resources: As we have described
before, a resource can only be created when it simul-
taneously becomes the target of an initial relationship.
This implies that potentially every user is allowed to
create new resources, as long as he is in Administrator
role for the originating resource. In our example, Bob
created his diary as well as his buddies-list on his own,
without need for any kind of action on part of the di-

rectory administrator. During the creation process, he
simply entered the needed data and associated himself
as an administrator via a relationship. Note that cre-
ation of resources does not affect the directory security
model. If Bob decides to create a new person record for
his school-mate “Eric”, Eric will be able to log into the
directory, but he is not allowed to access any data (as
long as nobody else creates any relationships pointing
to Eric). Eric can even create new personal resources
(e.g., a diary). While this behavior could be wanted
in some cases, as for a “SourceForge”-like application,
more secure applications will control the creation of
person resources more carefully.

Expiration of Resources: In our example, Dan
will leave the company on March 1st. Therefore,
the project managers, who are administrators for all
project groups, limited his relationship to the Qual-
ityAssurance group to this date. But the “latest of the
earliest dates of all paths from Root” when the record
about Dan would expire is still May 1st, the date when
the relationship to Bob’s buddies-list ends. Therefore,
the role Buddy is defined to be not preserving so the
latter relationship is not taken into consideration for
computing the expiration date. This way, it is ensured
that Dan can not access any resources when he finally
left the company. As another example, Bob’s diary
will expire at November 1st, provided that Bob himself
“exists” until then.

Event Management: During the whole life cycle
of a resource, the security state of the external resource
and the corresponding meta-data stored within the di-
rectory is held consistent by event handlers. Within
our example, the UIStyleGuide document is physically
located on a Unix file-system. Every time the access
rights for the developers and QA groups change, an
event handler also changes the rights within the file
system.

4 Conclusion

In this paper we propose introducing a shared, author-
itative model for organizational and personal relation-
ships, which enables users to specify explicitly the usage
rights of their personal data. Key challenges in admin-
istrating and securing project data include modeling
the volatility of relationships in an evolving computing
environment.

We conclude that privacy concerns can be addressed
by providing a unified resource and access control
model. On the one hand, it needs to be powerful enough

6

to individually set the data distribution scope. We be-
lieve our model to meet this requirement, as we have
not yet found a counterexample. On the other hand, it
needs to be simple enough to allow every individual to
determine the scope themselves. For this we intend to
conduct usability studies once the proposed model has
been fully implemented. We anticipate that computing
environments can benefit from the model by offering a
greater transparency into their policies.

In general, the usability issues are difficult to pre-
dict, as they relate to complex organizational and social
processes. Only an experimental approach will enable
us to assess the user acceptance for this model in detail.

Our vision is to make the organizational model the
overall concept, which is implemented on a peer-to-peer
network, where authorization components exist on ev-
ery node. As a consequence, users could specify access
rights on their data in much greater detail. This enables
the easy combination of work and recreational activites
that is becoming common practice. For example, a user
could store project-specific files on her laptop and still
be comfortable with occasionally sharing it with her
family members.

By enabling users to accept the responsibility for
authorizing access to data that is relevant to them, we
hope to eliminate the need for a superior administra-
tion authority entirely. This would in turn enable true
self-organization of emerging communities.

The incipient sharing of the organizational model
already allowed to alleviate administration of the di-
versity of our software development tools. We intend
to continue directory-enabling third-party tools and im-
prove the integration of those that already use the di-
rectory.

References

[1] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC:
A temporal role-based access control model. ACM
Trans. Inf. Syst. Secur., 4(3):191–233, 2001.

[2] B. Bruegge and A. H. Dutoit. Object-Oriented
Software Engineering: Conquering Complex and
Changing Systems. Prentice Hall, 2000.

[3] B. Bruegge, A. H. Dutoit, R. Kobylinski, and
G. Teubner. Transatlantic project courses in a
university environment. In Asian Pacific Software
Engineering Conference, Dec. 2000.

[4] The Directory — Overview of Concepts, Models,
and Service. International Telegraph and Tele-

phone Consultative Committee (CCITT), Dec.
1988. Recommendation X.500.

[5] O. Creighton, A. H. Dutoit, and B. Bruegge. Sup-
porting an explicit organizational model in global
software engineering projects. In International
Workshop on Global Software Development, In-
ternational Conference on Software Engineering,
May 2003.

[6] B. Curtis, H. Krasner, and N. Iscoe. A field study
of the software design process for large systems.
Communications of the ACM, 31(11), Nov. 1988.

[7] A. H. Dutoit, J. Johnstone, and B. Bruegge.
Knowledge scouts: Reducing communication bar-
riers in a distributed software development project.
In Asian Pacific Software Engineering Conference,
Dec. 2001.

[8] A. H. Dutoit and B. Paech. Rationale-based use
case specification. Requirements Engineering Jour-
nal, 2002.

[9] D. F. Ferraiolo, D. R. Kuhn, and R. Chan-
dramouli. Role-Based Access Control. Artech
House Publishers, Jan. 2003.

[10] R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The
geography of coordination: Dealing with distance
in R&D work. ACM, 1999.

[11] A. Kern, M. Kuhlmann, R. Kuropka, and
A. Ruthert. A meta model for authorisations in
application security systems and their integration
into RBAC administration. In Proceedings of the
ninth ACM symposium on Access control models
and technologies, pages 87–96. ACM Press, 2004.

[12] R. Kobylinski, O. Creighton, A. H. Dutoit, and
B. Bruegge. Building awareness in distributed soft-
ware enginering: Using issues as context. In In-
ternational Workshop on Distributed Software De-
velopment, International Conference on Software
Engineering, May 2002.

[13] G. M. Rehm. Just judicial activism? Pri-
vacy and informational self-determination in
U.S. and german constitutional law, Jan. 2000.
http://ssrn.com/abstract=216348.

[14] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and
C. E. Youman. Role-based access control models.
IEEE Computer, 29(2):38–47, 1996.

7

Charles : Person Dan : Person

UIDevelopers : Group

UIStyleGuide : Document

QualityAssurance : Group

role = Reader
start = 15 Jan
end = 15 Jul

R2 : Relationship

Alice : Person Bob : Person

Bob/Diary : Document

role = Author
start = 15 Feb
end = 1 Mar

R3 : Relationship

Bob/Buddies : PersonList

role = Admin
start = 10 Feb
end

R9 : Relationship

role = Buddy
start = 15 Feb
end = 1 May

R10 : Relationship

role = Member
start = 15 Jan
end = 1 Mar

R6 : Relationship

role = Chronicle
start = 1 Jan
end = 1 Nov

R7 : Relationship

role = Reader
start = 10 Feb
end = 1 Mar

R11 : Relationship

role = Author
start = 1 Mar
end = 15 Apr

R5 : Relationship

role = Author
start = 15 Jan
end = 15 Feb

R1 : Relationship

role = Reader
start = 15 Apr
end = 1 May

R4 : Relationship

role = Admin
start = 1 Jan
end

R8 : Relationship

Figure 3: Example Instance Diagram

8

