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Sequential Consistency

® Easy-to-understand memory model
® Conceptually:
® All memory accesses are visible immediately

® All tasks agree on same legal sequential
history of memory events

® No re-ordering
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Sequential Consistency

® Easy-to-understand memory model
® Conceptually:
® All memory accesses are visible immediately

® All tasks agree on same legal sequential
history of memory events

® No re-ordering

Inefficient without
optimizations!
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SC Example

Is rl == 1 AND r2 == 2 possible?
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SC Example

Is rl == 1 AND r2 == 2 possible?
No, 1f “sequentially consistent”

Slide 3



SC Example

2: Yy = 2; 4. x = 1;

1: rl = Xx; 3: r2 =vy;

Is rl == 1 AND r2 == 2 possible?

Yes, 1f the compiler reorders 1/2
and/or 3/4
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Sequentially Consistent Java
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® Simple model:

® Guard every memory access with barriers
(fields and array elements)
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Sequentially Consistent Java

® Simple model:

® Guard every memory access with barriers
(fields and array elements)

® Drawbacks:

® Barriers introduce overhead

® Prevents many standard optimizations
® Optimize to re-gain performance:

® Remove barriers where no parallel task may
interfere
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Optimization Question

® Can memory access ml interfere with m2?
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Optimization Question

® Can memory access ml interfere with m2?

task A task B
Q happens-before
ml: barrier { [ A mZ: barrier {
X.f = 42; [ ][ ] tmp = y.f;
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Optimization Question

® Can memory access ml interfere with m2?

task A task B

Q happens-before

X.'F=42; tmp =Y°f;

Xl Potentially aliased

V] Ordered memory access
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Sources of Task-Order Information

® Threads (Java)

® | ow-level synchronization, difficult to analyze
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Sources of Task-Order Information

® Threads (Java)
® | ow-level synchronization, difficult to analyze
® Forkl/join (OpenMP, X 10, Cilk)

® | exical scoping simplifies analysis
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Ordering in OpenMP

/*A*/

//#omp parallel for

for(int 1=0; 1<3; 1++) {
/*B*/

5

/*C*/
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Sources of Task-Order Information

® Threads (Java)

® | ow-level synchronization, difficult to analyze
® Forkl/join (OpenMP, X 10, Cilk)

® | exical scoping simplifies analysis
® TJask Libraries (Apple GCD, Microsoft TPL)

® Feature explicit task ordering

® Not much previous work here
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Ordering in Microsoft TPL

Task tA = Task.StartNew(/*A*/);
for(int 1=0; 1<3; 1++) {

tA.ContinueWith(/*B*/,
AttachedToParent);

/¥C*/

Slide 12



Ordering in Microsoft TPL
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Sources of Task-Order Information

® Threads (Java)

® | ow-level synchronization, difficult to analyze
® Forkl/join (OpenMP, X 10, Cilk)

® | exical scoping simplifies analysis
® TJask Libraries (Apple GCD, Microsoft TPL)

® Feature explicit task ordering

® Not much previous work here
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Sources of Task-Order Information

Abstraction:

Tasks with explicit
happens-before
relationships
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Our Model: Explicit Scheduling

Task a = schedule /*A*/;

schedule /*C*/;

Task c

for(int 1=0; 1<3; 1++) {
Task b = schedule /*B*/;
a - b;

b - c;

¥
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Our Model: Explicit Scheduling

Task a = schedule /*A*/;

schedule /*C*/;

Task c
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Our Model: Explicit Scheduling

Task a = schedule /*A*/;

schedule /*C*/;

Task c

for(int 1=0; 1<3; 1++) {

Task b = schedule /* ;
a - b;\

\b > C;

General enough to express threads,
fork/join, thread libraries, ...
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Schedule Analysis

Static bytecode analysis

Computes relation:
mayBeParallel (taskl, taskZ2)

If ImayBeParallel(taskl, taskZ2) then taskl
and task?Z are guaranteed to be ordered
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Schedule Analysis Steps



Schedule Analysis Steps

|. Extract partial schedules from source code

= Task variables plus ordering and loop information
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Schedule Analysis Steps

|. Extract partial schedules from source code

= Task variables plus ordering and loop information

2. Callgraph to resolve virtual entry points for tasks

3. Find tasks that may be created directly or indirectly
without ordering

® Key insight:
® We look for unordered-ness not ordered-ness

® Unordered-ness is monotonic!
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On Monotonicity

task T1

schedules A and B
with A - B

task T2
schedules A and B
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Evaluation Setup

® Bytecode-to-bytecode translation using
sun.misc.Unsafe.getXYVolatile() and

sun.mist.Unsafe.putXYVolatile() intrinsics

® Analyzes bytecode in SSA form

® Wala framework for analysis, Javassist for code
generation

® |ntel Core 2 Duo, 2.8 GHz,4Gb RAM
= 2 Java Threads

® Java |.6.0 (Mac)
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Benchmarks

® Erco Benchmarks: sor, tsp, hedc

® Java Grande (numeric apps): mold, ray, monte
® |onestar (Galois): barn, boruv, clust, d-tri,d-ref
® Configurations:

® Hand-optimized (baseline)

® No optimizations (none)

® Escape analysis only (esc)

® Schedule analysis + escape analysis (sa)
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Instrumentation Overhead

6000
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sor tsp hedc mold monte ray : barn boruv clust d- ref d-tri
B none esc B sa

# Instrumented Bytecodes
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Execution Time

1.6X

1.5x
1.4x

1.3X
1.2X

1.1x

1.0x

sSor tsp Ehedcé moldémonteé ray barn Eboruvé clusté d-refé d-tri
B none esc B sa

Normalized Execution Time Overhead
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Speedup sa vs. esc

Speedup sa over esc
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.
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tsp ihedcimoldimontei ray ibarniboruvi clusti d-ref d-tri
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Concluding Remarks

® Optimizations for shared-memory parallel programs
need task-order information to be effective

® Schedule analysis is an approach that

® can extract task-order information from real -
world programs

® provides starting point for optimizations

® Modest overhead over hand-optimized sequentially
consistent programs
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