Exploiting Task-Order

Information

for Optimizing Sequentially
Consistent Java Programs

Christoph M. Angerer

Thomas R. Gross
ETH Zurich, Switzerland

Sequential Consistency

® Easy-to-understand memory model
® Conceptually:
® All memory accesses are visible immediately

® All tasks agree on same legal sequential
history of memory events

® No re-ordering

Slide 2

Sequential Consistency

® Easy-to-understand memory model
® Conceptually:
® All memory accesses are visible immediately

® All tasks agree on same legal sequential
history of memory events

® No re-ordering

Inefficient without
optimizations!

Slide 2

SC Example

Is rl == 1 AND r2 == 2 possible?

Slide 3

SC Example

Is rl == 1 AND r2 == 2 possible?

Slide 3

SC Example

Is rl == 1 AND r2 == 2 possible?

Slide 3

SC Example

Is rl == 1 AND r2 == 2 possible?
No, 1f “sequentially consistent”

Slide 3

SC Example

2: Yy = 2; 4. x = 1;

1: rl = Xx; 3: r2 =vy;

Is rl == 1 AND r2 == 2 possible?

Yes, 1f the compiler reorders 1/2
and/or 3/4

Slide 4

Sequentially Consistent Java

Slide 5

Sequentially Consistent Java

® Simple model:

® Guard every memory access with barriers
(fields and array elements)

Slide 5

Sequentially Consistent Java

® Simple model:

® Guard every memory access with barriers
(fields and array elements)

® Drawbacks:

® Barriers introduce overhead

® Prevents many standard optimizations

Slide 5

Sequentially Consistent Java

® Simple model:

® Guard every memory access with barriers
(fields and array elements)

® Drawbacks:

® Barriers introduce overhead

® Prevents many standard optimizations
® Optimize to re-gain performance:

® Remove barriers where no parallel task may
interfere

Slide 5

Optimization Question

® Can memory access ml interfere with m2?

Slide 6

Optimization Question

® Can memory access ml interfere with m2?

task A

ml: barrier {
X.f = 42;
¥

Slide 6

Optimization Question

® Can memory access ml interfere with m2?

task A task B

o

ml: barrier { - m2: barrier {
x.f = 42; | | tmp = y.f;

¥ ¥

Slide 6

Optimization Question

® Can memory access ml interfere with m2?

task A task B

@

ml: barrier { - m2: barrier {
x.f = 42; | | tmp = y.f;

¥ ¥

V| Different Objects

Slide 6

Optimization Question

® Can memory access ml interfere with m2?

task A task B

V| Different Objects

Slide 6

Optimization Question

® Can memory access ml interfere with m2?

task A task B

B

ml: barrier { | ’ mZ: barrier {
x.f = 42; (M] tmp = y.f;

¥ \ S]

Slide 7

Optimization Question

® Can memory access ml interfere with m2?

task A task B

@

ml: barrier { | ’ mZ: barrier {
x.f = 42; [M] tmp = y.f;

¥ \ S]

Potentially aliased

Slide 7

Optimization Question

® Can memory access ml interfere with m2?

task A task B

<:::> happens-before

ml: barrier { - mZ: barrier {
x.f = 42; [M] tmp = y.f;

¥ \ S]

Potentially aliased

Slide 7

Optimization Question

® Can memory access ml interfere with m2?

task A task B
Q happens-before
ml: barrier { [A mZ: barrier {
X.f = 42; [][] tmp = y.f;
¥ N J

Xl Potentially aliased

V] Ordered memory access

Slide 7

Optimization Question

® Can memory access ml interfere with m2?

task A task B

Q happens-before

X.'F=42; tmp =Y°f;

Xl Potentially aliased

V] Ordered memory access

Slide 7

Sources of Task-Order Information

® Threads (Java)

® | ow-level synchronization, difficult to analyze

Slide 8

Sources of Task-Order Information

® Threads (Java)
® | ow-level synchronization, difficult to analyze
® Forkl/join (OpenMP, X 10, Cilk)

® | exical scoping simplifies analysis

Slide 9

Ordering in OpenMP

/*A*/

//#omp parallel for

for(int 1=0; 1<3; 1++) {
/*B*/

5

/*C*/

Slide 10

Ordering in OpenMP

/*A*/

//#omp parallel for

for(int 1=0; 1<3; 1++) {
/*B*/

5

/*C*/

Slide 10

Sources of Task-Order Information

® Threads (Java)

® | ow-level synchronization, difficult to analyze
® Forkl/join (OpenMP, X 10, Cilk)

® | exical scoping simplifies analysis
® TJask Libraries (Apple GCD, Microsoft TPL)

® Feature explicit task ordering

® Not much previous work here

Slide | |

Ordering in Microsoft TPL

Task tA = Task.StartNew(/*A*/);
for(int 1=0; 1<3; 1++) {

tA.ContinueWith(/*B*/,
AttachedToParent);

/¥C*/

Slide 12

Ordering in Microsoft TPL

Task tA = Task.StartNew(/*A*/);

for(int 1=0; 1<3; 1++) {

(tA.ContinueWith(+B*7,

AttachedToParent);

/¥C*/

Slide 12

Ordering in Microsoft TPL

Task tA = Task.StartNew(/*A*/);

for(int 1=0; 1<3; 1++) {

(tA.ContinueWith(+B*7,

(AttachedToParenﬁRi\

/¥C*/

Slide 12

Sources of Task-Order Information

® Threads (Java)

® | ow-level synchronization, difficult to analyze
® Forkl/join (OpenMP, X 10, Cilk)

® | exical scoping simplifies analysis
® TJask Libraries (Apple GCD, Microsoft TPL)

® Feature explicit task ordering

® Not much previous work here

Slide 13

Sources of Task-Order Information

Abstraction:

Tasks with explicit
happens-before
relationships

Slide 13

Our Model: Explicit Scheduling

Task a = schedule /*A*/;

schedule /*C*/;

Task c

for(int 1=0; 1<3; 1++) {
Task b = schedule /*B*/;
a - b;

b - c;

¥

Slide 14

Our Model: Explicit Scheduling

Task a = schedule /*A*/;

schedule /*C*/;

Task c

for(int 1=0; 1<3; 1++) {
Task b = schedule /* ;
a - b;\

\b > C;

Slide 14

Our Model: Explicit Scheduling

Task a = schedule /*A*/;

schedule /*C*/;

Task c

for(int 1=0; 1<3; 1++) {

Task b = schedule /* ;
a - b;\

\b > C;

General enough to express threads,
fork/join, thread libraries, ...

Slide 14

Schedule Analysis

Static bytecode analysis

Computes relation:
mayBeParallel (taskl, taskZ2)

If ImayBeParallel(taskl, taskZ2) then taskl
and task?Z are guaranteed to be ordered

Slide 15

Schedule Analysis Steps

Schedule Analysis Steps

|. Extract partial schedules from source code

= Task variables plus ordering and loop information

Slide 16

Schedule Analysis Steps

|. Extract partial schedules from source code

= Task variables plus ordering and loop information

2. Callgraph to resolve virtual entry points for tasks

Slide 16

Schedule Analysis Steps

|. Extract partial schedules from source code

= Task variables plus ordering and loop information

2. Callgraph to resolve virtual entry points for tasks

3. Find tasks that may be created directly or indirectly
without ordering

Slide 16

Schedule Analysis Steps

|. Extract partial schedules from source code

= Task variables plus ordering and loop information

2. Callgraph to resolve virtual entry points for tasks

3. Find tasks that may be created directly or indirectly
without ordering

® Key insight:
® We look for unordered-ness not ordered-ness

® Unordered-ness is monotonic!

Slide 16

On Monotonicity

task T1

schedules A and B
with A - B

task T2
schedules A and B

Slide 17

On Monotonicity

task T1 Ordered-ness:

schedules A and B
with A - B

task T2
schedules A and B

Slide 17

On Monotonicity

task T1 Ordered-ness:
@T1: A B
schedules A and B i
with A - B
task T2

schedules A and B

Slide 17

On Monotonicity

task T1 Ordered-ness:
@T1: A B
schedules A and B T2 ”
with A - B
task T2

schedules A and B

Slide 17

On Monotonicity

task T1

schedules A and B
with A - B

task T2
schedules A and B

Slide 17

On Monotonicity

task T1

schedules A and B

with A > B

task T2 Unordered-ness:
schedules A and B

Slide 17

On Monotonicity

task T1

schedules A and B

with A - B

Unordered-ness:

@T1l: ©

task T2
schedules A and B

Slide 17

On Monotonicity

task T1

schedules A and B

with A - B

Unordered-ness:

@T1l: @
@T2: A || B

task T2
schedules A and B

Slide 17

On Monotonicity

task T1

schedules A and B

with A - B

Unordered-ness:

@T1l: @
@T2: A || B

task T2
schedules A and B

Slide 17

Evaluation Setup

® Bytecode-to-bytecode translation using
sun.misc.Unsafe.getXYVolatile() and

sun.mist.Unsafe.putXYVolatile() intrinsics

® Analyzes bytecode in SSA form

® Wala framework for analysis, Javassist for code
generation

® |ntel Core 2 Duo, 2.8 GHz,4Gb RAM
= 2 Java Threads

® Java |.6.0 (Mac)

Slide 18

Benchmarks

® Erco Benchmarks: sor, tsp, hedc

® Java Grande (numeric apps): mold, ray, monte
® |onestar (Galois): barn, boruv, clust, d-tri,d-ref
® Configurations:

® Hand-optimized (baseline)

® No optimizations (none)

® Escape analysis only (esc)

® Schedule analysis + escape analysis (sa)

Slide 19

Instrumentation Overhead

6000
5000

4000

3000
2000

1000 I ;

g m » _] lJ l i
sor tsp hedc mold monte ray : barn boruv clust d- ref d-tri
B none esc B sa

Instrumented Bytecodes

Slide 20

Execution Time

1.6X

1.5x
1.4x

1.3X
1.2X

1.1x

1.0x

sSor tsp Ehedcé moldémonteé ray barn Eboruvé clusté d-refé d-tri
B none esc B sa

Normalized Execution Time Overhead

Slide 21

Speedup sa vs. esc

Speedup sa over esc

1.25

1.2

1.15

9.3
.

3.8
. &

SOr

tsp ihedcimoldimontei ray ibarniboruvi clusti d-ref d-tri

Slide 22

Related VWork

Compiler techniques for high performance sequentially

consistent java programs. /.
Sura et al, PPOPP'0O5

A case for an SC-preserving compiler. D.
Marino et al, PLDI"11

Efficient sequential consistency using conditional fences. C. Lin, V
Nagarajan, R. Gupta, PACT10

BulkCompiler: high-performance sequential consistency through

cooperative compiler and hardware support. W. Ahn et al,
MICRO 09

MHP Analysis. (Agarwal et al)

Slide 23

http://portal.acm.org/author_page.cfm?id=81351609546&coll=DL&dl=ACM&trk=0&cfid=11285666&cftoken=75224240
http://portal.acm.org/author_page.cfm?id=81351609546&coll=DL&dl=ACM&trk=0&cfid=11285666&cftoken=75224240
http://portal.acm.org/author_page.cfm?id=81351609546&coll=DL&dl=ACM&trk=0&cfid=11285666&cftoken=75224240
http://portal.acm.org/author_page.cfm?id=81351609546&coll=DL&dl=ACM&trk=0&cfid=11285666&cftoken=75224240

Concluding Remarks

® Optimizations for shared-memory parallel programs
need task-order information to be effective

® Schedule analysis is an approach that

® can extract task-order information from real -
world programs

® provides starting point for optimizations

® Modest overhead over hand-optimized sequentially
consistent programs

Slide 24

