
1

Exploiting Task Order Information for Optimizing
Sequentially Consistent Java Programs

Christoph M. Angerer, Thomas R. Gross
ETH Zurich, Switzerland

angererc@inf.ethz.ch, trg@inf.ethz.ch

Abstract—Java was designed as a secure language that sup-
ports running untrusted code as part of trusted applications.
For safety reasons, Java therefore defines a memory model that
prevents undefined behavior in multi-threaded programs even if
the programs are not correctly synchronized.

Because of the potential negative performance impact the
Java designers did not choose a simple and natural memory
model, such as sequential consistency, but instead developed a
relaxed memory model that gives the compiler more optimization
opportunities. As it is today, however, the relaxed Java Memory
Model is not only hard to understand but it unnecessarily
complicates reasoning about parallel programs and it turned out
to be difficult to implement correctly.

This paper presents an optimizing compiler for a Java version
that has sequential consistency as its memory model. Based on
a programming model with explicit happens-before constraints
between tasks, we describe a static schedule analysis that com-
putes whether two tasks may be executed in parallel or if they
are ordered. During optimization, the task-ordering information
is exploited to reduce the number of volatile memory accesses
the compiler must insert to guarantee sequential consistency.

The evaluation shows that scheduling information significantly
improves the effectiveness of the optimizations. For our set
of multi-threaded benchmarks the fully optimizing compiler
removes between 70% and 100% of the volatile memory accesses
inserted by the non-optimizing compiler. As a result, the overhead
of sequentially consistent Java compared to standard Java is
reduced from 136% on average for the unoptimized version to
11% on average for the optimized version. The results indicate
that with appropriate optimizations, sequential consistency can
be a feasible alternative to the Java Memory Model.

I. INTRODUCTION

From the beginning, Java was designed to be a safe and
secure language that supports running untrusted code as part
of trusted applications. As a multi-threaded language, Java
therefore must prevent undefined behavior even for programs
that are not correctly synchronized. The Java Memory Model
[1] formally defines the basic semantics of shared variables
and specifies what values a read of a shared memory location
is allowed to return.

For correctly synchronized code, that is, programs without
data races, the Java Memory Model guarantees sequential
consistency. In a sequentially consistent system, all threads
see write operations to the same memory location in the same
order and the operations of each individual thread appear in
the order specified by its program text. Because each thread
must behave according to its program text, it is relatively
easy for programmers to reason about sequentially consistent

Program 
bytecode

Points-to 
Analysis

Points-to 
information

Escape 
Analysis

Escape 
information

Schedule 
Analysis

OptimizationsOptimizationsOptimizations

Schedule 
information

Fig. 1. Dependencies between the different analyses and optimizations.

programs. However, many hardware and compiler optimiza-
tions commonly used in uniprocessors, such as register pro-
motion, common subexpression elimination, and reordering,
can potentially violate sequential consistency: the effects of
an optimization in one thread may be observed by another
thread and the program-text order can appear to be violated.

The Java Memory Model tries to minimize the possibly neg-
ative performance impact of strict memory models by relaxing
the constraints on the order of shared memory accesses. This
increases opportunities for the compiler to apply well-known
uniprocessor optimizations. However, a relaxed memory model
not only makes it harder for programmers to reason about
their applications; it also turned out to be extremely difficult
to implement correctly [2].

This paper presents an optimizing compiler for a Java
version with a sequentially consistent memory model. Because
the compiler is a bytecode-to-bytecode translator, the programs
can run on an unmodified standard Java Virtual Machine. The
compiler exploits task-ordering information gathered from the
program to compute whether two tasks are potentially executed
in parallel or whether they are ordered by happens-before
relationships. This ordering information helps the compiler to
decide for each program point whether a change in this point
may be observed by a parallel task (and thus violate sequential
consistency) or not.



2

II. AN OPTIMIZING COMPILER FOR SEQUENTIALLY
CONSISTENT JAVA

Figure 1 gives an overview of the optimizing compiler
and its three most important analyses: points-to analysis,
escape analysis, and schedule analysis. This section describes
the points-to analysis and escape analysis as well as the
optimization component. The schedule analysis is the main
contribution of this paper and described in more detail in
Section IV.

At the core of the optimization for sequentially consistent
Java is the problem of finding interfering program points.
In a sequentially consistent program, an optimization can be
applied at a program point P if there is no other program
point Q that at runtime may be executed in parallel and that
may observe the change in P 1. In general, two program points
P and Q are said to interfere at runtime if they fulfill the
following two criteria:

1) The two program points P and Q access the same
runtime object Objrt. At compile-time, this can be ap-
proximated by a points-to analysis that checks whether
P and Q may point to the same analysis object Obj. By
adding an escape analysis that computes whether Obj
is local to a task T () the number of interfering program
points can be further reduced.

2) P and Q are executed in parallel. Information about
what tasks may be executed in parallel is computed at
compile-time by a schedule analysis.

The compiler is realized as a bytecode-to-bytecode trans-
lator. It rewrites all memory accesses at interfering pro-
gram points (accesses to object fields as well as ac-
cesses to elements inside an array) into calls to sun.

misc.Unsafe.getXYZVolatile() and sun.misc.Unsafe

.putXYZVolatile()2. The volatile getters and setters in
the class Unsafe guarantee that the memory accesses follow
the Java volatile semantics thus creating happens-before
relationships between concurrent reads and writes.

The goal of the optimizations is to reduce the number of
such volatile memory accesses. This not only removes the
overhead directly associated with a volatile memory access
but also increases the optimization opportunities for the just-
in-time compiler when the program is executed.

A. Points-to Analysis and Escape Analysis

Starting from a bytecode representation of the program, the
points-to analysis computes points-to sets for each program
variable. Virtual call sites are also resolved by this phase, using
the points-to information as well as type information to find
the possible target methods for a call site.

The points-to analysis can be used to decide whether two
program points P and Q may interfere in a parallel program
by comparing the points-to sets at P and Q. If the points-to
sets are disjoint, then the sets of runtime objects accessed at P
and Q will be disjoint too, and so the program points do not

1This is a simple but conservative approximation of the critical cycle
detection in a delay-set analysis [3].

2XYZ is a placeholder for the various basic Java types such as int, float,
or Object.

MAY-INTERFERE
(1a) P accesses v1 inA()
(1b)Q writes v2 inB()

(2a) v1 may point to Obj
(2b) v2 may point to Obj

(3) Obj may escapeA() andB()
(4) parallel(A(), B())

mayInterfere(P, Q)

Fig. 2. The basic optimization question.

interfere. If the points-to sets overlap, however, there may be
runtime objects that will be accessed at P and Q concurrently.

The escape analysis is based on the points-to analysis and
uses the points-to sets to find all task objects that may be
created during the execution of a program. For each task object
T (), the escape analysis starts at the task entry method of
T () and follows the resolved call-graph to find all methods
m() that may be invoked during the execution of T (). For
each object Obj created in a method m() reachable by T ()
the escape analysis decides whether Obj may escape T (). An
object Obj is said to escape T () if it is passed as a parameter
to T ()’s entry method, if it may be stored in a static field, if
it may be passed as a parameter to another task, or if it is
reachable by any object that escapes T ().

It is interesting to note that neither the points-to analysis
nor the escape analysis consider task ordering at all. This
additional information is provided by the schedule analysis
presented in this paper.

B. Optimziations

Figure 2 shows the MAY-INTERFERE optimization rule.
MAY-INTERFERE computes all pairs of program points P and
Q with potential read/write or write/write interference.

The result of the MAY-INTERFERE rule is a relation
mayInterfere between pairs of program points P and Q. For
program points P and Q that are reachable by tasks A() and
B() respectively, clauses (1a) and (1b) select the variables v1
and v2 that P and Q access. Clauses (2a) and (2b) consult
the points-to sets to check whether v1 and v2 may point to the
same analysis-time object Obj. The third clause tests whether
Obj may escape either task A() or B(). If in clause (4) the
schedule analysis further found that A() and B() may be
executed in parallel, the optimization concludes that program
points P and Q may interfere with each other at runtime and
thus the memory access must be made volatile.

The optimization for reducing the number of volatile mem-
ory accesses described here can be complemented by addi-
tional optimizations that make use of scheduling information.
[4], for example, presents optimizations such as synchroniza-
tion removal or removal of read/write barriers in software
transactional memory systems that can be integrated with our
compiler. The resulting compiler optimizes different aspects
of multi-threaded programs that are not necessarily all related
to the sequentially consistent memory model.



3

III. A TASK MODEL WITH EXPLICIT TASK ORDERING
CONSTRAINTS

The optimizations presented in this paper exploit the fact
that many tasks in a parallel program do not actually execute
in parallel with each other but are explicitly or implicitly
ordered. Imagine, for example, a program that executes in
multiple distinct phases. While tasks within one phase may
run in parallel, the phase structure ensures that two tasks from
different phases are ordered and therefore can never participate
in a data race.

Many modern parallel programming libraries and languages
allow the programmer to specify task orderings with varying
degrees of explicitness. Structured fork-join style systems, for
example, syntactically enforce that the forking and joining task
is ordered with respect to the forked sub-tasks. Other systems,
such as Apple’s Grand Central Dispatch or Microsoft’s Task
Parallel Library, allow the programmer to explicitly define
happens-before relationships between task objects thus avoid-
ing the limitations of lexically scoped parallelism.

This section describes a model for fine-grained parallelism
based on lightweight tasks with explicit happens-before rela-
tionships. We base our model on the work of Angerer et al. [5]
because this model is general enough to express a wide variety
of existing concurrency patterns: structured fork-join style
parallelism, semi-structured tasks with ordering information,
and unstructured threads.

The basic building block of the execution model is a task.
A task is similar to a method in that it contains code that
is executed in the context of a this-object (or the class,
in the case of static methods/tasks). Unlike a method,
however, one does not call a task, which would result in the
immediate execution of the body, but instead schedules it for
later execution.

As an example, consider a task T() that starts two long-
running computations Compute1() and Compute2() and
schedules a task Print() that will print the result after the
computations have finished:

task T() {
Task print = schedule this.Print();
Task compute1 = schedule this.Compute1();
Task compute2 = schedule this.Compute2();
compute1→print;
compute2→print;

}

A task schedule is represented as a graph of object.

Task() pairs. The statement schedule this.Print(), for
example, creates a new node in the schedule with the this
object and the Print() task method and returns an object
of type Task representing that node. Like any other object,
Task objects can be kept in local variables, passed around as
parameters, and stored in fields.

At runtime, a scheduler constantly chooses tasks that
are eligible for execution and starts them. The order in
which the scheduler is allowed to start the tasks is spec-
ified by the edges in the schedule graph. In the ex-
ample, the statement compute1→print creates an ex-
plicit happens-before relationship between the two ref-
erenced task objects and adds the happens-before edge

this.Compute1()→this.Print() to the schedule. In the
above program, the scheduler guarantees that both tasks
Compute1() and Compute2() have finished execution be-
fore task Print() is started. The tasks Compute1() and
Compute2(), however, are not ordered and may therefore be
executed in parallel.

Whenever a new task is scheduled, the scheduler automat-
ically adds an initial happens-before relationship between the
currently executing task and the newly created task node.
These implicit edges prevent the immediate execution of the
newly scheduled tasks and enable the current task to add
additional constraints to the schedule before it finishes.3.

A task method can also take task objects as parameters. One
common use for task parameters is to allow task methods to
schedule subtasks relative to tasks that have been scheduled
outside. In the next example, Compute() may use additional
subtasks to perform its computation. In this case, all subtasks
must have finished before the Print() task executes. To
implement this behavior, we can pass the Print() task object
as a parameter to Compute() and schedule the subtasks before
it:
task T() {
Task print = schedule this.Print();
//pass reference to print task:
Task compute = schedule this.Compute(print);
compute→print;

}
task Compute(Task later) {
Task subtask = schedule this.Subtask(later);
//schedule subtask before later
subtask→later;

}

In Compute() we pass the reference later even further
along to Subtask(), thus allowing Subtask() (and its
subtasks, if there are any) to push the execution of the Print

() task further and further into the future until the whole
computation has finished. Once the subtasks terminate without
inserting new tasks, the scheduler will be able to execute
Print().

A. Example with Threads and Barriers

Figure 3 shows a simplified excerpt of the sor benchmark
(successive over-relaxation over a 2D grid). In method begin

(), sor first starts a number of worker threads on line 7 before
the main thread waits for all workers to finish on line 14 in
method end().

Every worker successively refines the overall result by
repeating the same computation a number of times. Each
worker executes the same loop on line 25. As a data-parallel
application, the workers generally work in parallel on separate
parts of the input data (not shown in the example). Due to
data-dependences, however, all workers must synchronize on
a barrier twice in every iteration on lines 27 and 29 to separate
the two computation phases on lines 26 and 28.

3This behavior—delaying sub-tasks until the parent task has finished—has
been chosen to keep the model as small and general as possible. The effect of
an explicit start() method can be achieved by a program transformation
similar to continuation passing style: at each call to start() the parent
task is split into two tasks, one for the prelude and one for the remainder of
the task [5].



4

1 public class Sor {
2 Barrier barrier = new Barrier(NumWorkers);
3 Worker[] workers = new Worker[NumWorkers];
4 void begin() {
5 for(int i=0; i<NumWorkers; i++) {
6 workers[i] = new Worker(this, i);
7 workers[i].start();
8 }
9 this.end();

10 }
11 void end() {
12 for(int i=0; i<NumWorkers; i++) {
13 try {
14 workers[i].join();
15 } catch(InterruptedException e) {}
16 }}}
17
18 class Worker extends Thread {
19 Sor sor; int id;
20 Worker(Sor sor, int id) {
21 this.sor = sor;
22 this.id = id;
23 }
24 void run() {
25 for(int count=0; count<NumRounds; count++)
26 /* phase 1 ... */
27 this.sor.barrier.wait();
28 /* phase 2 ... */
29 this.sor.barrier.wait();
30 }}}

Fig. 3. Simplified version of the sor benchmark using threads and barriers.

ba
rri

er
 1

ba
rri

er
 1

ba
rri

er
 2

ba
rri

er
 2

w1

w2

w3

w1

w2

w3

w1

w2

w3

w1

w2

w3

w1

w2

w3

main main

start() join()

iteration 1 iteration 2

Fig. 4. One main and three worker threads while executing the example
from Figure 3. Dashed lines depict periods where a thread is blocked.

The execution behavior of this program is depicted in Figure
4. The basic pattern implemented by the Sor class is a fork
and successive join of the worker threads. For the correct
functioning of the program it is important that all workers
execute the loop the same number of times and that on each
iteration all workers call the same barriers in the same order. If
one worker would exit the loop early, for example, the barrier
will block the other workers resulting in a deadlock.

The implicit dependency on the number of loop iterations
and the number of barrier.wait() calls each worker ex-
ecutes makes this example hard to analyze statically. The
problem is that it is non-trivial to reason about which parts
of the program may be executed in parallel and which parts
are ordered. For example, in the presence of aliasing it can be
difficult to reason that all threads always synchronize on the
same barrier object.

B. Example with Explicit Scheduling Constraints

Figure 5 shows the Sor class, rewritten to use explicit
scheduling constraints instead of threads and barriers. The

1 class Sor {
2 Worker[] workers = new Worker[NumWorkers];
3 int NumRounds = 100;
4 task Begin() {
5 for(int i=0; i<NumWorkers; i++) {
6 this.workers[i] = new Worker(this, i);
7 }
8 Task end = schedule this.End();
9 Task round = schedule this.Round(0, end);

10 round→end;
11 }
12 task End() { }
13 task Round(int count, Task later) {
14 if(count < NumRounds) {
15 Task nextRound =
16 schedule this.Round(count++, later);
17 nextRound→later;
18
19 Task barrier = schedule this.Barrier();
20 for(int i=0; i<workers.length; i++) {
21 Task phase1 = schedule workers[i].Phase1();
22 Task phase2 = schedule workers[i].Phase2();
23 phase1→barrier;
24 barrier→phase2;
25 phase2→nextRound;
26 }}}
27 task Barrier() { }
28 }

Fig. 5. The sor benchark from Figure 3 with explicit scheduling constraints.

fork/join pattern of the original code was transformed into
a scheduling of the End() task on line 8 and passing this task
object from iteration to iteration on lines 9 and 16 until the
computation has finished.

The biggest change to the original example in Figure 3 is
that the loop moved out of the workers and was transformed
into the recursive task Round() in the Sor class. Instead of
letting every worker execute the loop separately, the Sor object
works as an orchestrator, scheduling the execution of the two
work phases for each worker in each iteration.

The task Round() implements one iteration. After testing
on line 14 whether to continue, line 16 schedules the next
iteration and orders it before the original End() task on line
17.

Line 19 schedules the Barrier() task. Barrier() is only
used for ordering purposes and has no functional behavior. On
lines 21 to 25 the Sor class then schedules the two phases for
each worker for this iteration and orders the Phase1() before
the barrier and Phase2() after the barrier but before the next
iteration. After the Round() task for one iteration has finished,
the scheduler can continue to start executing all the Phase1()
tasks of the workers.

For the Round() method, the analysis presented in this
paper statically extracts the schedule shown in Figure 6. Task
objects that are created inside Round() or that are passed as
parameters to Round() are drawn as filled circles. The unfilled
circle stands for the logical now task that executes Round().
The double-headed arrows represent the happens-before edges
that are implicitly added between the creating task now and the
created tasks. The other edges indicate explicit happens-before
relationships resulting from the →-statements in Round().
Because the Phase1() and Phase2() tasks may be scheduled
multiple times inside the loop, the corresponding nodes in the



5

nextRound:Sor.Round()

barrier:Sor.Barrier()

phase1:Worker.Phase1()

phase2:Worker.Phase2()

later:<param 1>

now

*

*

Fig. 6. Schedule statically extracted from task Round() from Figure 5.
Double-headed arrows indicate implicit creation edges, gray boxes indicate
schedule sites inside loops.

graph are marked as “multiple” as indicated by the asterisk
and the gray boxes.

Given this extracted schedule, the analysis can conclude that
the two phases, the barrier, the next iteration, and the later

parameter are all ordered and therefore will never execute
in parallel. The analysis can further deduce that there may
be more than one Phase1() tasks that are not ordered with
one another and that similarly, Phase2() may be scheduled
multiple times without any internal ordering.

IV. SCHEDULE ANALYSIS

The goal of the schedule analysis is to determine whether at
runtime two tasks may be executed in parallel or whether they
are always ordered by happens-before relationships. Schedule
analysis thus computes the function Task×Task → Relation
where Relation is one of the following:

• Ordered: The two tasks are ordered if either all of
their possible executions are ordered by happens-before
relationships or if they can never co-exist in a single
run of the program (e.g., they are scheduled in different
branches of a conditional statement).

• Parallel: If two tasks are not ordered, they are considered
(potentially) parallel.

The key insight behind our analysis is to not compute what
tasks are ordered with each other but the opposite: what tasks
may be unordered. Consider as an example the following tasks
T1() and T2():
task T1() {
Task a = schedule this.A();
Task b = schedule this.B();
a→b;

}
task T2() {
Task a = schedule this.A();
Task b = schedule this.B();

}

When looking for ordered-ness, discovering the statement
a→b in task T1() would make us record that tasks A() and
B() are ordered. However, inside task T2() another A() task
is scheduled which is unordered with respect to at least one of
the B()’s. This discovery in T2() would require us to remove
the fact A() ordered-with B() from the set of known
facts.

The property of “ordered-ness” is non-monotonic in the
sense that finding more information may add facts as well as
remove facts from the set of ordered tasks. Taking “unordered-
ness” as a property, however, we can re-gain the monotonicity.

If we deduce in T2() that the tasks A() and B() may
be parallel, no schedule statement and no happens-before
relationship that we discover later will invalidate this fact.

The result of the schedule analysis is computed in three
steps. In the first step, we compute for each task method the
pairs of local task variables that are unordered with respect to
each other. The information about whether two task variables
are unordered is extracted from the explicit happens-before
relationships present in the program code.

The second step computes for each local variable of a task
method T () the set of tasks that are unordered with that
variable. This step is an inter-task analysis that works not only
on T () but also takes results computed about subtasks of T ()
into account. The special case where a task variable is passed
as a parameter to a subtask is also handled in this step.

The third and final step is to extract the pairs of unordered
tasks by combining the information about unordered vari-
able/task pairs with the tasks that may be referenced by the
variables.

Schedule analysis has exactly one dependence on a points-
to analysis: to resolve task method implementations at virtual
call sites. If a points-to analysis is not available or considered
too expensive, a quicker type-based approximation of the call-
graph can be used to compute the set of target tasks at each
schedule site. Since none of the benchmarks we present in this
paper requires virtual dispatch for task methods, the results of
the schedule analysis would be the same if we used a type-
based call-graph instead of the points-to analysis.

The remainder of this section describe all three steps in
more detail and discusses our approach to handling aliasing.

A. Terminology

For the analysis described in this paper, we consider tasks
to be the same as their corresponding task methods. An im-
plementation, however, may choose to add additional context
sensitivity to distinguish different task objects and increase its
precision.

Task variables are program variables that point to task
objects. We consider a task variable to be local to a task T () if
it either comes from a schedule site inside T () or if is a formal
parameter of T (). Conditional and non-local task variables
cannot be used by the analysis and must be approximated
with their worst case effects as described in Section IV-E.

Because the analysis works on a static single assignment
(SSA) representation of the input program, each task vari-
able is assigned only once. Therefore, a non-parameter task
variable is equivalent to the schedule site where it is defined.
Depending on the context, we thus use the term schedule site
interchangeably with the corresponding task variable.

B. Computing Unordered Variable Pairs

The first step of analyzing a task method is to extract
information about the ordering of local tasks variables. For
each pair of task variables a and b, this step decides whether
at runtime the task objects referenced by a and b will get
ordered or not.



6

The ordering of variables is extracted from the explicit
happens-before relationships in the program code. It is im-
portant, however, to decide for each →-statement whether
it orders the tasks conditionally or unconditionally. As an
example, consider this simplified version of the sor example
from Figure 5 with only one barrier and only phase2:
task Round() {
Task barrier = schedule this.Barrier();
Task phase2 = schedule this.phase2();
Task nextRound = schedule this.Round();
barrier→phase2;
phase2→nextRound;

}

Because all three schedule sites barrier, nextRound, and
phase2 execute unconditionally, we can conclude that the
two happens-before edges have the transitive effect of order-
ing barrier and nextRound. This conclusion is not true,
however, if any node on a transitive path may be scheduled
conditionally, as in the following example:
task Round() {
Task barrier = schedule this.Barrier();
Task nextRound = schedule this.nextRound();
while(random()) {
Task phase2 = schedule this.Phase2();
barrier→phase2;
phase2→nextRound;

}
}

Here, if random() is false the first time, the schedules site
at phase2 is never executed and the two happens-before edges
are not created. Therefore, it is not guaranteed that barrier

and nextRound are transitively ordered in all cases, and
so they must be considered potentially parallel. However, no
matter how many Phase2() tasks are scheduled inside the
loop, we can conclude that all Phase2() tasks are ordered
with respect to barrier and nextRound and that the Phase2
() tasks are not ordered among themselves.

If we replace the while loop with a do/while loop, we
know that the loop will be executed at least once and so we
can once again conclude that tasks barrier and nextRound

are ordered transitively.
In the original example, the workers array is initialized

with a size > 0 and therefore it is known that the for loop is
executed more than once. If the size of the array was unknown
at compile time, the analysis would in fact conclude that
barrier may be parallel to nextRound and later. It would
still know, however, that phase1 is ordered before phase2.

In [5], the authors define genuine edges as those edges that
the analysis can rely on and they present an algorithm for how
to compute them. In this paper, we assume a relation a ↔∗ b
stating that the task variable a is (transitively) ordered with
the task variable b. For a schedule site a inside a loop that is
ordered across loop iterations, this relation contains the fact:
a ↔∗ a.

In addition to transitive ordering, we use a relation a 6= b.
The 6=-relation contains two schedule sites a and b if they are
different sites in the task method T (). Further, if a schedule site
c is located inside a loop in T (), we say that c 6= c in T () to
capture the fact that schedule site c may be executed multiple
times across different loop iterations.

UNORDEREDTASKS–INTRA
a 6= b in T ()

not a ↔∗ b in T () b may scheduleB() in T ()

taskNotOrdered(a, B()) in T ()

UNORDEREDSUBTASKS–NOPARAM
a 6= b in T () b is no param to a in T ()

a →∗ b a may scheduleA() in T
C() may be subtask ofA()

taskNotOrdered(b, C()) in T ()

UNORDEREDSUBTASKS–WITHPARAM
a 6= b in T () a →∗ b a may scheduleA() in T ()

c is formal param n ofA()
b is actual param n to a in T ()

taskNotOrdered(c, D()) inA()

taskNotOrdered(b, D()) in T ()

Fig. 7. Rules for computing unordered variable/task pairs

C. Computing Unordered Variable/Task Pairs

In a second step, the analysis computes for every task
variable the set of tasks that may be unordered with the task
this variable represents. Figure 7 shows the rules for this
computation.

The first rule UNORDEREDTASKS-INTRA selects for each
task variable a in a task method T () all unordered task
variables b in T (). It then concludes that all tasks B() that
may be scheduled by b are unordered with the task variable
a.

The second two rules are inter-task computations that work
across task method boundaries. This is necessary because to
find all tasks that may be parallel with the task represented
by a task variable a we must take all possible subtasks into
account.

For a given pair of schedule sites a and b, only one of the
two subtask rules applies. If b is not passed as a parameter to a,
the second rule UNORDEREDSUBTASKS-NOPARAM applies.
The rule finds all tasks C() that may be subtasks of any task
A() scheduled at a and concludes that those C() tasks are un-
ordered with b. The relation C()may be subtask ofA()
is computed by a simple reachability analysis that starting in
task method A() follows all tasks that may be scheduled in
all schedule sites until a fixed point is reached.

The third rule UNORDEREDSUBTASKS-WITHPARAM spe-
cializes the case where b is passed as a parameter to a in
order to reduce the set of tasks that are considered potentially
parallel to b. 4 Instead of simply taking all possible subtasks
of A(), this rules selects only those subtasks of A() that
are unordered with respect to the corresponding parameter
variable.

Applying these rules to the example schedule from Figure
6 results in the following conclusions:

4For reasons of brevity, this rule does not take the direction of happens-
before relations into account. Our implementation splits this rule further to
specialize for cases where variables are known to be ordered before or after
a parameter.



7

PARALLELTASKS–SCHEDULESITE
a may scheduleA() in T ()
taskNotOrdered(a, B()) in T ()

parallel(A(), B())

PARALLELTASKS–SIBLINGS
a 6= b in T ()

a may scheduleA() in T ()
b may scheduleB() in T ()
C() may be subtask ofA()
D() may be subtask ofB()

parallel(C(), D())

Fig. 8. Computing parallel tasks

• Variable phase1 is located inside a loop and there-
fore phase1 6= phase1 and not phase1 ↔∗ phase1.
Therefore, rule 1 can be applied and concludes that
taskNotOrdered(phase1, Phase1()).

• Similarly, for phase2 we can conclude that
taskNotOrdered(phase2, Phase2()).

• All other pairs of task variables are ordered and therefore
rule 1 cannot be applied to any of them.

• phase1 is ordered before all other task variables. There-
fore, phase1 is ordered with respect to all their subtasks
through the implicit creation edges. Neither rule 2 nor
rule 3 applies.

• The barrier variable is ordered after phase1. Because
it is not used as a parameter to phase1, the second rule
applies and deduces that barrier is unordered with any
subtask that may be created by Phase1().

• Similar reasoning applies to the variable phase2, classi-
fying it as potentially parallel with subtasks of Phase1()
and Barrier().

• The parameter later is passed along as a parameter to
nextRound and ordered after nextRound and therefore
rule 3 applies. Assuming that in this example the tasks
Barrier(), Phase1(), and Phase2() do not schedule
any subtasks, rule 3 concludes that parameter later is
ordered with all other tasks. It is able to do this because
later is used as an actual parameter to nextRound

and it can map the orderings with respect to the formal
parameter of Round() back to the schedule site and the
later variable. This recursion is a fixed point compu-
tation that stops once the set of potentially parallel tasks
stops changing.

D. Computing Unordered Task Pairs

The final step is to compute what tasks may be unordered
and therefore potentially parallel to each other. Figure 8 shows
the two rules that are involved in this computation.

The first rule PARALLELTASKS-SCHEDULESITE states that
if a schedule site a may schedule task A(), task A() may be
parallel to all tasks B() that are not ordered with the variable
a. This information has been computed in the previous step.

The second rule PARALLELTASKS-SIBLINGS relates all
subtasks of the tasks scheduled in the same task T (). Without

parameter passing, even if the parent tasks are ordered there
is no way to order their subtasks with respect to each other.
For cases with parameter passing, however, this rule is overly
conservative and introduces some imprecision. In the imple-
mentation, this rule is specialized to the cases when tasks that
are ordered before a parameter can be considered transitively
ordered with the children of the parameter.

For the example from Figure 5, the first rule concludes that
in task method Round() Phase1() is parallel to itself as
is Phase2(). Because the only task that creates subtasks is
Round(), the second rule does not add any additional tasks
to the parallel relation. The imprecision of the second rule
mentioned above would consider subtasks of End() to be
parallel with all subtasks of Round(). However, since End

() does not schedule any other tasks, this imprecision does
not affect the results for this example.

E. Tracking Aliasing

Task objects are normal objects that can be passed to and be
returned from methods as well as stored in fields. Therefore,
a program is allowed to add happens-before relationships to
and from tasks that have been loaded from fields. The only
two restrictions in the original model presented in [5] are that
new happens-before edges must not create cycles and that a
task T () adding a happens-before edge between tasks A() and
B() must be scheduled before B(), that is T () → ∗B().
Both restrictions together result in a well-formed schedule
and guarantee that the scheduler can always choose a task
for execution.

To avoid complex must-alias analysis, however, our analysis
focusses on analyzing the common case of happens-before
edges that are created between local task variables. Happens-
before edges containing task objects that were loaded from
fields are ignored by the analysis, thus over-approximating the
parallelism in the program. Over-approximating parallelism
is generally the safe and conservative assumption. As an
example, take the effects of data races. Two tasks are allowed
to write to the same data if and only if they are sequentially
ordered. If the sequential execution cannot be guaranteed we
must assume that both tasks are potentially executed in parallel
and report a data race if they access the same data.

None of the benchmarks evaluated in Section V required
task objects to be stored in fields and could therefore be
analyzed without restrictions.

V. EVALUATION

We evaluate the performance and effectiveness of the sched-
ule analysis for the sequentially consistent Java compiler
presented in Section II. We use several multi-threaded bench-
mark programs taken from three different benchmark suites to
measure the cost and precision of the schedule analysis and
compare the runtime overhead of an unoptimized sequentially
consistent version and the optimized versions.

A. Setup of the Experiment

All experiments were run on a machine equipped with a
Intel Core 2 Duo 2.8GHz and 4Gb of RAM. The compiler



8

implementation is single threaded, however, and therefore only
one core is used during the compilation.

The first six benchmarks are taken from [6]. sor (successive
over-relaxation over a 2D grid), and tsp (traveling salesman
problem) are data- and task-parallel applications with data
access patterns of scientific codes; threads are synchronized
in a fork/join style based on barriers instead of locks. hedc is
a warehouse for scientific astrophysics data that implements
a meta crawler for searching multiple Internet archives in
parallel. The individual queries are handled by reusable worker
threads. The programs mol(dyn), ray(tracer), monte(

carlo) are multi-threaded numeric applications taken from
the Java Grande benchmarks [7].

The last five benchmarks are part of the Lonestar 2.0
benchmark suite, a collection of widely-used real-world se-
quential applications that exhibit irregular behavior [8]. The
benchmarks are parallelized using the Galois runtime system
[9]. The Galois runtime provides a framework for parallelizing
irregular algorithms that are organized around object-oriented
pointer-based data structures such as graphs and trees..

Barnes-Hut (barnes) simulates the gravitational forces
acting on a galactic cluster. The Boruvka’s algorithm (boruv)
computes a minimal spanning tree of an edge-weighted undi-
rected graph. clust is an implementation of a well-known
data-mining algorithm called Agglomerative Clustering. De-
launay triangulation d-tri and Delaunay mesh refinement d
-ref compute triangulations of sets of points such that each
triangle satisfies certain quality constraints.

For most cases, adapting the benchmarks to the task model
was straight forward and almost purely syntactical. Only the
tsp benchmark required some more refactoring of the original
algorithm because the original code was not written in a way
that fits the task model very well.

B. Benchmark Characteristics and Analysis Performance
Table I gives an overview of the size of the individual bench-

marks as well as the performance of the schedule analysis.
The reported numbers of application classes for the Lonestar
benchmarks include the classes of the Galois runtime system.

For most cases, the schedule analysis takes only a small
percentage of the overall compilation time, between 1% and
11%, with the moldyn benchmark being a notable exception.

For extracting the schedule from a given method, the
schedule analysis uses a data-flow approach that is sensitive
to the number and nesting of back-edges in the control-flow
graph. moldyn is implemented in a way such that almost
all task objects are scheduled inside a single method. This
method contains multiple nested loops, in each of which task
objects are scheduled and happens-before relationships are
created, which causes the data-flow computation to converge
only slowly. Therefore, about 98% of the time spent during
schedule analysis is used for extracting the information from
the bytecode and only about 2% is spent for actually analyzing
the schedule. This behavior seems to be a pathological case
that is related to the way this particular benchmark has been
implemented; however, it also shows that further investigation
in a more performant schedule extraction with better worst-
case behavior is required.

1.0x

1.1x

1.2x

1.3x

1.4x

1.5x

1.6x

sor tsp hedc mold monte ray barn boruv clust d-ref d-tri

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e 

O
ve

rh
ea

d

none esc sa

10.3

!

10.3

!

4.3

!

3.9

!

0!%

20.00!%

40.00!%

60.00!%

80.00!%

100.00!%

sor tsp hedc mold monte ray barn boruv clust d-ref d-tri

esc sa

0

1000

2000

3000

4000

5000

6000

sor tsp hedc mold monte ray barn boruv clust d-ref d-tri# 
In

st
ru

m
en

te
d

 M
em

or
y 

A
cc

es
se

s

none esc sa

Runtime overhead

number of instrumented reads/writes

percentage of uninstrumented reads/writes

Fig. 9. Number of instrumented field and array access bytecodes.

C. Precision of the Analysis

For evaluating the effects of each individual analysis on
the overall result, we have compiled the benchmarks in three
different configurations:

• In the none configuration, the compiler has no advanced
analysis information and must instrument all field and ar-
ray accesses in order to guarantee sequential consistency.

• The second configuration esc uses escape analysis in-
formation in addition to points-to information to decide
whether two memory accesses executed by different tasks
may require memory barriers.

• The third configuration sa adds scheduling information
to the points-to analysis and escape analysis to distinguish
between accesses that are ordered and accesses that may
happen in parallel.

Figure 9 reports the precision of the different configura-
tions in terms of the number of memory accesses that were
instrumented.

For all benchmarks, the schedule analysis significantly
reduces the number of instrumentations. A large number of
the instrumentations that are removed are located in single-
threaded code that is executed during setup and tear-down of
the applications and therefore have only relatively little effect
on the overall runtime. However, in many cases the schedule
analysis is able to identify and remove instrumentations in hot
paths of the programs which can have a significant impact on
the runtime overhead as presented in the next section.

In all benchmarks, the initial data structures are set up
during the start phase and then passed to the subtasks. The
subtasks perform their computation before a single-threaded
teardown phase verifies the results and reports to the user.
The escape analysis flags all objects that are passed to and
from the parallel tasks as ‘escaping’. Therefore, the compiler
configuration that only uses escape information falsely iden-
tifies many memory accesses as conflicting. With scheduling
information, however, the compiler can often find that shared
objects are only written during the setup phase and only read
in parallel.

D. Runtime Overhead of Sequentially Consistent Java

Figure 10 shows the overhead of the benchmarks compiled
with the none, esc, and sa configurations. The baseline of
this comparison is the runtime the original version that uses
the relaxed Java Memory Model.



9

TABLE I
COMPLEXITY AND PERFORMANCE OF THE ANALYSIS.

sor tsp hedc mold monte ray barn boruv clust d-ref d-tri
benchmark size

application classes 4 9 59 13 19 18 355 381 367 364 366
library classes 40 42 68 40 44 25 82 85 78 82 69
methods in call-graph 202 258 826 251 445 225 3,670 3,792 3,769 3,736 3,700
task methods 9 2 14 11 3 6 5 3 3 2 3

analysis performance
compilation time 2.8s 2.1s 6.2s 120.2s 3.6s 3.5s 17.9s 16.9s 17.5s 15.5s 18.0s
schedule analysis time 0.3s 0.1s 0.5s 115.8s 0.1s 0.2s 0.8s 0.3s 0.2s 0.2s 0.3s
in % 11% 7% 7% 96% 3% 6% 4% 2% 1% 1% 2%

1.0x

1.1x

1.2x

1.3x

1.4x

1.5x

1.6x

sor tsp hedc mold monte ray barn boruv clust d-ref d-tri

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e 

O
ve

rh
ea

d

none esc sa

10.3

!

10.3

!

4.3

!

3.9

!

0!%

20.00!%

40.00!%

60.00!%

80.00!%

100.00!%

sor tsp hedc mold monte ray barn boruv clust d-ref d-tri

esc sa

0

1000

2000

3000

4000

5000

6000

sor tsp hedc mold monte ray barn boruv clust d-ref d-tri# 
In

st
ru

m
en

te
d

 M
em

or
y 

A
cc

es
se

s

none esc sa

Runtime overhead

number of instrumented reads/writes

percentage of uninstrumented reads/writes

Fig. 10. Runtime overhead of unoptimized and optimized sequential
consistency compared to Java’s relaxed memory model.

For four out of the eleven benchmarks the fully-optimized
sequentially consistent Java is within 2% of the original ver-
sion whereas the configurations with no optimizations or only
escape analysis show overheads between 10% and 50%. In
the seven remaining cases the overhead of the fully optimized
version was under 32%.

The sor and ray benchmarks show an exceptionally bad
behavior for the sequentially consistent versions. The reason
for this is that the authors of those benchmarks chose to
never use any local variables but always access fields directly.
However, instrumenting accesses inside hot loops hurt the
performance especially. If the parallel tasks work on their
own copies of the data the schedule analysis with the escape
analysis can deduce that there are only few conflicting memory
accesses and thus restore the performance of the original
program.

The performance of hedc is mainly constrained by in-
put/output operations which hides the overhead of sequential
consistency even in the unoptimized version.

When looking at the runtime overhead it can be seen that the
improvements for the Lonestar benchmarks are significantly
smaller (about 5%-10% over the none configuration) than
the improvements seen in the other benchmarks. This is,
because most of the used Galois methods cannot be optimized.
However, there are—often significant—sequential phases other
than the setup/teardown phases that can be optimized. In barn,
for example, each time step ends with a sequential Advance()
task that advances all bodies by directly accessing each body’s
fields. The optimization removes the fences around all those
field accesses which accounts for most of the improvement
seen in the barn benchmark.

VI. RELATED WORK

The happens-before ordering was first formulated by Lam-
port [10] and is the basis of the Java memory model [1].
Despite its significance in the memory model, in Java happens-
before edges can be created only implicitly, e.g., by using
synchronized blocks or volatile variables.

The ability of specifying task ordering constraints explicitly
in the program code raises the question whether or not
synchronization primitives such as locks are needed at all. In
[11], the authors prove that it is impossible to build concur-
rent implementations of many algorithms and data-structures
such as sets, queues, and mutual exclusion without low-level
synchronization. Therefore, low-level synchronization cannot
be avoided in all cases. However, algorithm designers can
improve the effectiveness of the optimizing compiler by pre-
ferring explicit task-ordering over low-level synchronization
wherever possible.

(Task-order Analysis) Rugina and Rinard [12] describe a
pointer analysis for programs with structured fork-join style
concurrency. For each program point, their algorithm computes
a points-to graph that maps each pointer to a set of locations.
By capturing the effects of pointer assignments for each thread,
their algorithm can compute the interference information be-
tween parallel threads. Computing the interference information
relies on the lexical scoping of the parallel constructs; it cannot
handle unstructured parallelism.

By combining pointer and escape analysis, subsequent
projects were able to extend their analyses beyond structured
parallelism [13], [14]. Both analyses compute points-to in-
formation but do not directly answer as to how two tasks
are executed with respect to each other. Further, the tight
integration of the pointer analysis with the escape analysis
and concurrency analysis is contrary to our goal of separating
the concerns of schedule analysis from points-to analysis.

A may-happen-in-parallel (MHP) analysis can be used to
determine what statements in a program may be executed in
parallel [15]. Without flow sensitivity, relating two program
statements is of limited use for analyzing programs with
unstructured parallelism. If two threads execute the same
statements but in different contexts, for example, a context
insensitive MHP analysis might unnecessarily classify the
statements as parallel. When the programming language is
restricted to structured parallelism, as is the case for X10,
an intra-procedural MHP analysis can achieve good results,
however [16].



10

Barik [17] describes a context and flow-sensitive may-
happen-before analysis that distinguishes threads by their
creation site. By using threads as their model, however, they
cannot exploit task ordering information available in other, non
thread-based systems.

There are two general directions of research to improve the
performance of sequential consistency. Systems with hardware
support and pure software implementations.

(Hardware based) BulkSC [18] is a hardware implemen-
tation that enforces sequential consistency through an arbiter
that determines whether groups of memory operations can be
committed. Ahn et al. [19] presents BulkCompiler, a hardware-
compiler interface that works with group-committing hardware
to provide a whole-system high-performance sequentially con-
sistent platform. [20] describe hardware supported conditional
memory fences that decide dynamically if there is a need to
stall at each fence. The conditional fence mechanism relies
on compiler inserted fence instructions to achieve sequential
consistency but requires an additional small hardware buffer.

(Software based) Delay-set analysis, first presented by
Shasha and Snir [21], computes a minimal set of delays that
guarantees sequential consistency. Those delays are enforced
by inserting memory fences. By exploiting the ordering con-
straints of the hardware consistency model and the property
of fence and synchronization operations, Lee and Padua [22]
were able to optimize the number of fence instructions that the
compiler must insert. In the Pensieve project, Fang et al. [23]
developed various additional fence insertion and optimization
algorithms. In [3] Sura et al. combine multiple analyses,
namely escape, thread structure, and delay-set analysis, into a
single compiler for sequentially consistent Java. Their thread
structure analysis tries to identify simple cases where tasks are
arranged in trivial fork/join patterns inside a single method.

The above software based implementations target programs
with traditional Java threads. The unstructured nature of
threads, however, makes it difficult to gather good information
about the relative order in which threads execute. In contrast,
the schedule analysis presented in this paper can analyze task
ordering across method boundaries as well as recursive task
creation. Many of the supporting analyses (especially delay-
set analysis) presented in the related work, however, can
be combined with schedule analysis to improve the overall
analysis precision.

VII. CONCLUDING REMARKS

Optimizing compilers for parallel programs require knowl-
edge about the scheduling of tasks at runtime to perform
effective optimizations. Task-scheduling information, however,
is not available in present compilers and today’s systems must
often assume the worst case: that all objects are shared and
accessed in parallel.

This paper presents an optimizing compiler for a sequen-
tially consistent version of Java that exploits task-ordering
information gathered from the program text. Our experience
shows that the schedule analysis is effective in identifying
program points that potentially access shared memory in
parallel.

Factoring out the schedule analysis into an independent
phase has the additional benefit of making it easier to integrate
additional optimizations that are not directly related to se-
quential consistency. This allows for previously incompatible
optimizations to be applied to the same program. For example,
adding a synchronization removal optimization to the compiler
is trivial because it can be based on the same schedule analysis.

We believe that exposing the schedule of a program and
allowing a compiler to analyze and optimize it is a necessary
step towards efficient next-generation compilers for multicore
systems.

REFERENCES

[1] J. Manson, W. Pugh, and S. V. Adve, “The java memory model,” in
POPL, 2005, pp. 378–391.

[2] J. Ševčı́k and D. Aspinall, “On validity of program transformations in
the java memory model,” in ECOOP, 2008.

[3] Z. Sura, X. Fang, C.-L. Wong, S. P. Midkiff, J. Lee, and D. A. Padua,
“Compiler techniques for high performance sequentially consistent java
programs,” in PPoPP, 2005, pp. 2–13.

[4] C. M. Angerer and T. R. Gross, “Static analysis of dynamic schedules
and its application to optimization of parallel programs,” in LCPC, 2010,
pp. 16–30.

[5] C. M. Angerer and T.R. Gross, “now happens-before later: static
schedule analysis of fine-grained parallelism with explicit happens-
before relationships,” in SPLASH/Onward, 2010, pp. 3–10.

[6] C. von Praun and T. R. Gross, “Object race detection,” in OOPSLA,
2001, pp. 70–82.

[7] Java Grande Forum, “Multi-threaded benchmark suite,”
http://www.epcc.ed.ac.uk/research/java-grande/.

[8] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali, “Lonestar: A
suite of parallel irregular programs,” in ISPASS’09, 2009, pp. 65–76.

[9] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval, “How
much parallelism is there in irregular applications?” in PPoPP, 2009,
pp. 3–14.

[10] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, pp. 558–565, 1978.

[11] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and
M. Vechev, “Laws of order: expensive synchronization in concurrent
algorithms cannot be eliminated,” in POPL, 2011, pp. 487–498.

[12] R. Rugina and M. C. Rinard, “Pointer analysis for structured parallel
programs,” in TOPLAS, 2003, pp. 70–116.

[13] A. Salcianu, M. C. Rinard, “Pointer and escape analysis for multi-
threaded programs,” in PPoPP, 2001, pp. 12–23.

[14] M. G. Nanda and S. Ramesh, “Pointer analysis of multithreaded java
programs,” in SAC, 2003, pp. 1068–1075.

[15] G. Naumovich, G. Avrunin, and L. A. Clarke, “An efficient algorithm
for computing mhp information for concurrent java programs,” in
ESEC/FSE-7, 1999, pp. 338–354.

[16] S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar, “May-happen-
in-parallel analysis of x10 programs,” in PPoPP, 2007, pp. 183–193.

[17] R. Barik, “Efficient computation of may-happen-in-parallel information
for concurrent java programs,” in LCPC, 2005, pp. 152–169.

[18] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “Bulksc: bulk enforce-
ment of sequential consistency,” in ISCA, 2007, pp. 278–289.

[19] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X. Fang, S.
P. Midkiff, and D. Wong, “Bulkcompiler: high-performance sequential
consistency through cooperative compiler and hardware support,” in
MICRO, 2009, pp. 133–144.

[20] C. Lin, V. Nagarajan, and R. Gupta, “Efficient sequential consistency
using conditional fences,” in PACT, 2010, pp. 295–306.

[21] D. Shasha and M. Snir, “Efficient and correct execution of parallel
programs that share memory,” ACM Trans. Program. Lang. Syst, pp.
282–312, 1988.

[22] J. Lee and D. A. Padua, “Hiding relaxed memory consistency with a
compiler,” in PACT, 2001, pp. 824–833.

[23] X. Fang, J. Lee, and S. P. Midkiff, “Automatic fence insertion for shared
memory multiprocessing,” in ICS, 2003, pp. 285–294.


