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Abstract

With the arrival of multicore systems, parallel programming is becoming increasingly main-
stream. Writing correct parallel programs, however, has turned out to be difficult and prone
to errors without proper support from the employed programming languages, compilers, and
runtime systems. Over the last years, researchers and engineers have developed numerous ab-
stractions and programming models that make developing parallel programs easier, safer, and
more efficient.

Despite the advances made in parallel programming models, libraries, and runtime systems,
the corresponding compilers still remain largely ignorant of the parallelism exhibited by the
program execution. In particular, current compilers do not have any knowledge about what
tasks are scheduled when in the program and how they are ordered—even though many higher-
level parallel programming models and libraries contain a wealth of task-order information that
can be exploited by the compiler. Without task-scheduling knowledge, however, compilers are
missing important optimization and verification opportunities.

This dissertation explores how compilers for parallel programs with shared memory can
gather and exploit knowledge about the scheduling of tasks at runtime. By analyzing potential
orderings between tasks, the compiler can decide whether accesses to shared memory by differ-
ent tasks may conflict and thus result in data races. We present a concrete schedule analysis that
can extract task-ordering information from real-world programs. The schedule analysis can be
combined with standard program analyses such as points-to and escape analyses to improve the
precision of known optimizations as well as enable new optimizations.

We present two case studies to evaluate the effectiveness of the schedule analysis. The first
case study is an optimizing compiler for a version of Java that uses sequential consistency as
its memory model. Sequential consistency solves many inconsistencies of the Java Memory
Model. However, it comes at the cost of large runtime overhead, because it prevents many of
the standard optimization techniques. Our compiler exploits task-order information to decide
whether or not a program operation may conflict with a parallel task. If not, the compiler is
allowed to aggressively apply all standard optimizations to this program part.

The second case study is an optimizing compiler for a system with dynamic fractional per-
missions. In this system, every object is associated with a list of tasks that have read and/or
write permission for the object. Tasks can grant read permission to subtasks by splitting their
own permission into fractions and later collect those fractions back to re-gain the original per-
mission. The overhead of checking permissions is reduced by an optimizing compiler that uses
task-ordering information to minimize the places where permission checks must be inserted.

In addition to the two case studies, we describe multiple smaller optimization and verifica-
tion techniques that benefit from task-order information. While we do not present a thorough
evaluation of those techniques, we do report anecdotal evidence where we have data available.
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Kurzfassung

Durch die wachsende Verbreitung von Mehrkernprozessoren wird der nebenläufigen Program-
mierung ein immer höherer Stellenwert beigemessen. Die Erfahrung hat jedoch gezeigt, dass
die Entwicklung korrekter paralleler Programme schwierig und fehleranfällig ist. Dies ist ins-
besondere der Fall, wenn der Entwickler nicht auf die Unterstützung der eingesetzten Program-
miersprache, des Compilers und des Laufzeitsystems zählen kann. Aus diesem Grund wurden
über die letzten Jahre zahlreiche neuartige Abstraktionen und Programmiermodelle entworfen,
die das Erstellen nebenläufiger Programme einfacher, sicherer und effizienter gestalten sollen.

Ungeachtet der Fortschritte, die die Forschung in parallelen Programmiermodellen, Biblio-
theken und Laufzeitumgebungen vorweisen kann, haben die meisten zugehörigen Compiler
kein Konzept von der in Programmen auftretenden Nebenläufigkeit. Moderne Compiler haben
im Allgemeinen keine Information darüber, wann welche Tasks im Programm disponiert und in
welcher Reihenfolge sie ausgeführt werden. Den Compilern gehen dadurch wertvolle Möglich-
keiten zur Programmoptimierung und -verifikation verloren, obwohl viele parallele Program-
miermodelle und -bibliotheken eine Fülle von Informationen bezüglich der Ausführungsrei-
henfolge von Tasks beinhalten, die der Compiler zur Effizienzsteigerung einsetzen könnte.

Diese Dissertation behandelt das Thema, wie ein Compiler Informationen über die Aus-
führungsreihenfolge von Tasks autonom und automatisiert aus nebenläufigen Programmen mit
gemeinsam genutztem Hauptspeicher extrahieren und ausnutzen kann. Indem der Compiler die
partielle Ordnung der Tasks analysiert, kann er potentiell konkurrierende Zugriffe auf den ge-
meinsamen Hauptspeicher und die daraus resultierenden Wettlaufsituationen erkennen. Wir prä-
sentieren einen Algorithmus, genannt Schedule Analyse, welcher eine partielle Task-Ordnung
automatisiert aus anwendungsnahen Programmen extrahiert. Die Kombination der Schedule
Analyse mit weiteren Standardanalysen aus dem Compilerbau resultiert in einer erhöhten Prä-
zision und damit Effizienzsteigerung bekannter und neuartiger Optimierungen gleichermassen.

Wir evaluieren die Effektivität der Schedule Analyse anhand zweier Fallbeispiele. Das erste
Fallbeispiel beschreibt einen optimierenden Compiler für eine Javaversion mit einem sequenti-
ellen Konsistenzmodell. Der Einsatz sequentieller Konsistenz als Speichermodell löst viele In-
konsistenzen des Java Speichermodells, resultiert jedoch aufgrund der zusätzlich notwendigen
Speicherverwaltung und der Verunmöglichung vieler Optimierungen in einer erhöhten Laufzeit.
Der beschriebene Compiler nutzt Informationen über die Ausführungsreihenfolge von Tasks,
um zu entscheiden, ob eine gegebene Programmoperation mit einem nebenläufigen Task po-
tentiell in Konflikt steht. Falls nicht, kann der Compiler die Kosten für die Speicherverwaltung
reduzieren und den entsprechenden Programmteil aggressiv optimieren.

Das zweite Fallbeispiel behandelt einen optimierenden Compiler für ein System mit dyna-
mischen partiellen Zugriffsrechten. In diesem System ist jedes Objekt mit einer Liste zugriffs-
berechtigter Tasks assoziiert. Ein Task, dem zumindest Lesezugriff gewährt wurde, kann sein
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Zugriffsrecht in partielle Leserechte zerteilen und diese an Subtasks weitergeben. Diese Bruch-
stücke können zu einem späteren Zeitpunkt wieder eingesammelt werden, um das originale
Zugriffsrecht zurück zu erhalten. Da zu jedem gegebenen Zeitpunkt nur jeweils ein Task das
vollständige Zugriffsrecht auf ein Objekt besitzen kann, werden konkurrierende Zugriffe auf
das Objekt verhindert. Die Kosten, die mit der Überprüfung der Zugriffsrechte einher gehen,
werden minimiert, indem der Compiler eine auf der Schedule Analyse basierenden Optimie-
rung anwendet.

Zusätzlich zu den beiden Fallbeispielen beschreibt diese Dissertation eine Auswahl weite-
rer Optimierungen und Verifikationen, die von dem Wissen über die Ausführungsreihenfolge
von Tasks profitieren. Obwohl wir für diese Beispiele aus Zeitgründen keine tief gehende Eva-
luation durchführen können, präsentieren wir Daten und Anhaltspunkte, die die Bedeutung der
Schedule Analyse für die effektive Optimierung paralleler Programme verdeutlichen.
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1
Introduction

The widespread adoption of multicore processors in both high-end and commodity computer
systems over the last years made parallel programming become increasingly mainstream. As an
answer to this trend, researchers and engineers have developed new abstractions and program-
ming models for concurrent programming. Despite the advances in parallel programming mod-
els, libraries, and runtime systems, however, the corresponding compilers still remain largely
ignorant of how and when tasks are scheduled and how they relate to one another. This disser-
tation shows that it is valuable for a compiler to compute scheduling information in the form
of Task×Task→ Relation mappings where Relation answers the question of how two program
tasks relate to each other:

Sequential: Two tasks are sequential if their execution is strictly ordered.

Exclusive: Two tasks are exclusive if they can never co-exist in a single run of the program
(e.g., they are scheduled in different branches of a conditional statement).

Parallel: If two tasks are neither sequential nor exclusive, they are considered (potentially)
parallel.

Scheduling information can, for example, enable a compiler to apply more aggressive op-
timizations to program parts that do not interfere with any task that may execute concurrently.
Without knowledge about task scheduling, compilers are missing important optimization and
verification opportunities.

The quality of the scheduling information that a compiler can extract from a program highly
depends on the parallel computation model that the program uses. In a traditional thread model,
such as the threads used in the Java language, for example, the lifetime of a thread and its
dependencies on other threads are not stated explicitly; rather, they come about as a side effect
of executing low-level primitives such as signals, barriers, and locks. While making for an
efficient and reasonably easy to use system, compilers have a hard time extracting high-level
execution behavior from such low-level operations.

Experience has shown that not only compilers have difficulties with analyzing threaded
programs. Even programmers often reason incorrectly about the execution behavior of their
program and thus inadvertently introduce errors that are related to incorrect thread ordering
and synchronization [26, 37, 73]. The exponential growth of possible program-operation in-
terleavings makes manual reasoning difficult for small programs, and intractable already for
medium-sized applications.

1
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To help programmers with designing and implementing correct and efficient parallel pro-
grams, researchers therefore have come up with safer approaches. In general terms, those ap-
proaches reduce the unbound flexibility provided by standard threads and introduce restrictions
in the form of specialized syntactic language features, libraries, and programming models. By
taking away flexibility and adding restrictions on how and when tasks can execute and what
memory each task can access, reasoning about the program behavior and writing correct code
becomes easier.

Structured parallelism Programming models that support structured parallelism provide
high-level concurrency constructs that are sufficiently expressive for a wide range of parallel
computation patterns. Lexically scoped fork/join constructs, for example, make it easier to
identify the context an operation is executed in and helps with finding other program points that
may execute in parallel with it. The syntactic restrictions imposed on the programming model
simplify manual and automatic reasoning about the program, resulting in more robust and often
more efficient programs [97].

Examples for systems with structured parallelism are Cilk [16, 98], X10 [27], Habanero
Java [52], or OpenMP [93]. Because those systems replace ad-hoc threads with fork/join style
parallelism, a compiler can extract meaningful task scheduling information much more easily
from a program written in one of those languages than from a functionally equivalent Java
program. For example, the fork/join pattern guarantees that the forked sub-tasks have all been
executed and finished before the joining task starts.

Task parallelism Structured fork/join style parallelism is a relatively restrictive model and
comes at the cost of flexibility, making it difficult to model some common patterns such as
futures or producer-consumer. In recent years, various parallel programming libraries have
been developed that allow a programmer to specify task orderings in the program with varying
degrees of explicitness.

Examples for libraries with explicit task ordering are Intel’s Threading Building Blocks [99],
Apple’s Grand Central Dispatch [12], Microsoft’s Task Parallel Library [68], or Intervals [81].
By allowing the programmer to explicitly define happens-before relations between task objects
in the program source, those systems avoid the limitations of lexically scoped parallelism while
addressing many of the problems resulting from unrestricted threads.

This dissertation describes schedule analysis as a fully automated approach for extracting
task-ordering information from programs and explores how compilers can effectively exploit
the computed scheduling information in optimizations.

1.1 Thesis statement

The primary goal of this thesis is to explore how optimizing compilers for parallel programs
with shared memory can benefit from the knowledge about the scheduling of tasks at runtime.
By analyzing what tasks may execute concurrently and whether they access the same memory,
a compiler can better optimize programs and apply program transformations that could not be
safely applied otherwise. This motivates the following thesis statement:
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“In order to be effective, compiler optimizations for shared-memory paral-
lel programs must exploit task-ordering information: information about whether
two tasks are potentially executed in parallel or whether they are always ordered.
Schedule analysis is one approach that can extract task-ordering information from
real-world programs; the extracted ordering information is sufficient to improve
existing compiler optimizations as well as enable new ones.”

To establish this thesis I proceed in three steps. The first step is to define a programming
model that is expressive and flexible enough to represent task-ordering in many current pro-
gramming languages and libraries while containing enough information to be useful for static
analysis. The second step is to develop an algorithm for extracting scheduling information from
programs that use this programming model. In a third step, I compare different optimizations
that are written with and without scheduling information. The evaluation suggests that knowl-
edge about task scheduling is important for effective optimization and the proposed schedule
analysis is one way how such information can be gathered.

1.2 Summary of the thesis and key contributions

This dissertation investigates how compiler optimizations can benefit from knowledge about
the (partial) ordering of tasks. The goal is to design a system for analyzing and optimizing
parallel programs. The presented approach preserves both flexible, unstructured control flow
and static analysis of the program schedule. To summarize, this thesis makes the following key
contributions:

A programming model with explicit ordering constraints: We define a representation and
execution model for parallel programs that is based on tasks. As program-level objects,
task objects can be kept in local variables, passed around as parameters, and stored in
fields. Programmers can explicitly add happens-before ordering constraints between two
task objects. At runtime, a scheduler constantly chooses tasks that are eligible for execu-
tion and starts them. Tasks and happens-before relations provide a minimalist model that
is expressive enough to model the behavior of current state-of-the-art parallel libraries and
language constructs while providing enough information to statically extract meaningful
task-order information from real-world programs.

Schedule analysis: We describe an analysis that extracts an abstract schedule from a program
that was written in or transformed into our task representation. The analysis abstracts a
potentially infinite number of runtime task objects into a finite set of analysis-time objects.
By analyzing the effects of the explicit happens-before constraints present in the source
program, the analysis computes a relation for each pair of abstract task objects.

Evaluation: We present two detailed case studies. In the first case study we have developed an
optimizing compiler for a version of Java that uses sequential consistency as its memory
model. The second case study is an optimizing compiler for a system that uses dynamic
fractional permissions to detect data-races at runtime. Each case study is evaluated with
multiple benchmark programs and show that optimizations based on scheduling informa-
tion significantly improve execution performance. Besides the detailed case studies we
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describe additional uses of task-schedule information in compilers that have been imple-
mented as prototypes but not evaluated in detail.

1.3 Organization of this dissertation

This dissertation is organized as follows:
Chapter 2 provides some background on Leslie Lamport’s approach to proving correctness

of parallel programs and explains the two fundamental operation relations, happens-before and
can-affect. Being familiar with how program correctness can be proven in Lamport’s framework
is important for developing compiler optimizations because in essence a compiler optimization
is a proof that a given program transformation does not violate the observable program se-
mantics. This chapter also expands Lamport’s model to include the notion of happens-before
relations not only between individual operations but between whole tasks.

Chapter 3 introduces a programming model for fine-grained parallelism based on
lightweight tasks with explicit happens-before relations. This model is general enough to ex-
press a wide variety of existing concurrency patterns: structured fork/join style parallelism,
semi-structured tasks with ordering information, and unstructured threads. For representing
concurrent programs, we introduce two new primitives to a Java-like language. One primitive
schedules a new task and the other explicitly adds a happens-before relation between two task
objects. Furthermore, this chapter discusses some general properties of task schedules that aid
the understanding of the program behavior.

Chapter 4 presents a compiler framework for parallel programs that exploits task-order in-
formation in its optimizations. When executing a program with explicit scheduling, the runtime
keeps track of the task objects and their happens-before relations. At compile-time, the runtime
schedule is approximated by an abstract schedule. We describe an algorithm that autonomously
extracts the abstract schedule from the input program and present a schedule analysis that can
compute from the abstract schedule what tasks may be executed in parallel and what tasks are
ordered.

The case study in Chapter 5 presents and evaluates an optimizing compiler for a Java version
with a sequentially consistent memory model. Because the compiler is a bytecode-to-bytecode
translator, the programs can run on an unmodified standard Java Virtual Machine. The compiler
uses the task-ordering information gathered by the schedule analysis to compute the minimal set
of field and array accesses that must be protected with memory fences in order to guarantee se-
quential consistency semantics. The evaluation shows that scheduling information significantly
improves the effectiveness of the optimizations. For our set of multi-threaded benchmarks the
overhead of sequentially consistent Java compared to standard Java is reduced from 136% on
average for the unoptimized version to 11% on average for the optimized version. The results
indicate that with appropriate optimizations, sequential consistency can be a feasible alternative
to the Java Memory Model.

The second case study, presented in Chapter 6, is an optimizing compiler for a language
with dynamic fractional permissions, a dynamic variant of fractional permissions. In this pro-
gramming model, objects are associated with access control lists (ACLs) that define what access
rights a given task has on the object. ACLs guarantee data-race freedom by asserting that if a
task has write access to an object, no other task can read the object. In the general case, the
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compiler must guard all object accesses with checks of the objects’ ACLs. However, by ex-
ploiting task-order information, the compiler can remove ACL checks for those operations that
are not conflicting with any parallel task.

Chapter 7 describes further uses of how task-order information can be used in optimizing
compilers. By comparing results from the schedule analysis with programmer provided anno-
tations, for example, the compiler can warn the programmer when objects he intended to be
task-local may be accidentally shared. We also present additional optimizations that we have
implemented but not systematically evaluated. Optimizations presented in this chapters include
synchronization removal, reducing strong atomicity overhead in software transactional memory,
synchronization variant selection, and happens-before order relaxation.

Chapter 8 discusses open issues and future work before Chapter 9 summarizes and con-
cludes the dissertation.





2
Background

The theory behind this work is based on the happens-before relation formulated by Leslie Lam-
port [59]. The happens-before relation (denoted: →) is a strict partial ordering of operations in a
concurrent system such that two operations A and B are ordered, written A→B, if there is a causal
relationship between them. Lamport’s model does not require the operations to be indivisible
atomic events but allows for complex operations. Therefore, the same formalisms and axioms
can be applied on different abstraction levels of the system.

This chapter introduces the idea to raise the abstraction level of operations from relatively
low-level events to the level of whole tasks. Merging all operations that are executed by the same
task into a single operation and adapting the happens-before relations and can-affect relations
accordingly results in a task schedule: a set of tasks that are partially ordered by happens-before
relations.

After providing some background on Lamport’s happens-before relations, this chapter then
introduces task schedules and discusses sources for task-ordering in programs using different
parallel models, languages, and libraries.

2.1 Lamport’s happens-before relations

In “A New Approach to Proving the Correctness of Multiprocess Programs” [60], Leslie Lam-
port presented a formalism for proving the correctness of parallel algorithms which he devel-
oped further in subsequent years [62]. Lamport’s model proved to be useful in many different
areas because it avoids making any assumptions about the atomicity of operations and only few
assumptions about the interaction of concurrent memory reads and writes. [9] Because Lam-
port’s method does not require operations to be atomic, it allows for analyzing systems at dif-
ferent levels of detail: multiple low-level operations can simply be aggregated into higher-level
operations and analyzed with the same basic formalism.

2.1.1 Formalism

Lamport defines programs as collection of operations. Each operation is ultimately composed
of a set of indivisible events such as memory reads/writes, jumps, or arithmetic calculations. A
program execution is a partial order over operations defined by two distinct types of relations:
happens-before relations (→) and can-affect relations (⇢, also called “can causally affect”).

For two operations A and B that are ordered by a happens-before relation A→B, all events

7
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in B happen only after all events in A have been completed. If we think of the execution of an
operation as the time interval it takes to execute all its contained events, the happens-before
relation A→B can be graphically depicted as follows (where time is running from left to right):

A B

Two operations A and B that are not ordered by a→-relation can affect each other, written as
A⇢B, if at least one event a ∈ A precedes at least one event b ∈ B; that is, operation A has begun
before operation B is completed. Graphically, the can-affect relation is presented as:

A

B

Note, that A⇢B only relates the start-point of A’s interval to the end-point of B’s interval.
Specifically, it does not order the two start-points with each and it does not order the two end-
points. Therefore, it is undefined whether A or B starts first and it is undefined whether A or B
finishes first. However, it is known that interval A has started before B ends. As an example
for such a program behavior, consider the case where operation A contains an event that sets a
shared flag and operation B is a loop that waits for that flag to be set. While it is unimportant
whether during the program execution interval A or B started first, it is clear that B will only end
after A has set the flag.

From the definitions for operations, happens-before relations, and can-affect relations, Lam-
port derives the following five basic axioms:

A1. → is transitive (A→B→C implies A→C) and irreflexive (A�A).

The→-relation is a partial order on the operations: if operation A happens before operation
B then A also happens before all operations that are preceded by B. Because an operation
execution can never precede itself, the →-relation is irreflexive.

The ⇢-relation is not an order relation, however, because two interfering operations can
affect each others execution. If two operations A and B overlap, it is possible that A⇢B and
B⇢A at the same time. Further, the ⇢-relation is not transitive. The following drawing
(adopted from [9]) illustrates a case where A⇢B⇢C but A�C:

A
B

C

A2. A→B implies A⇢B and B�A.

Intuitively, → is stronger than ⇢. If A has finished before B starts then all events a∈A pre-
cede all events b∈B, which matches the definition of the⇢-relation. In the other direction,
because operation B cannot affect an operation A that has already executed earlier, B�A.

A3. A→B⇢C or A⇢B→C implies A⇢C.

The first part of this axiom, also depicted in the following drawing, states that if at least
one event b ∈ B precedes at least one event c ∈ C then the events of operation A happening
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before B also precede at least this one event c ∈ C. The second clause can be justified
accordingly.

C

A B

A4. A→B⇢C→D implies A→D.

This axiom allows us to assume a stronger →-relation between A and D for a chain A→B⇢C→D containing a weak ⇢-relation. As shown in the following drawing, if at least one
event b ∈ B happens before at least one event c ∈ C then knowing that all events in A happen
before b and all events in D happen after c lets us deduce that A→D.

C

A B

D

A5. For any A there are only a finite number of B such that A�B.

This axiom essentially asserts a system execution must begin at some point in time and
that all operations executions eventually terminate. Non-terminating operations can be
modeled with a different set of axioms [62].

Axioms A1 to A4 are used for proving safety properties whereas Axiom A5 is useful for
proving liveness properties. To complete the axiom system of the five original axioms described
by Lamport, Anger [9] introduced the following additional axiom:

A6. A⇢B→C⇢D implies A⇢D.

This axiom can be intuitively understood by following the arrows from A to D in the
following diagram. If some event a ∈ A precedes some event b ∈ B, and B happens before
event c ∈ C which precedes event d ∈ D then at least the one event a ∈ A precedes at least
the one event d ∈ D and therefore A⇢D.

C

A

B

D

2.1.2 Example: Proving correctness of the butterfly barrier for two tasks

The happens-before relations and can-affect relations presented in the previous Section 2.1.1
define a framework for proving correctness of parallel programs [60]. As an example, this
section presents a correctness proof of the implementation of the Brooks butterfly barrier [22]
for two tasks.1

1A barrier for more than two tasks can be realized by chaining multiple of those two-task barriers.



10 CHAPTER 2. BACKGROUND

Task 0
1 \\before barrier
2
3 inBarrier0 = true;
4 while(! inBarrier1);
5 inBarrier1 = false;
6 while(inBarrier0);
7
8 \\after barrier

Task 1
\\before barrier

inBarrier1 = true;
while(! inBarrier0);
inBarrier0 = false;
while(inBarrier1);

\\after barrier

//phase #n

//announce arrival of this task
//wait for other task to arrive
//release other task
//wait for other task to release this

//phase #n+1

Figure 2.1: Butterfly Barrier for Two Tasks.

The butterfly barrier is an algorithm for barrier synchronization that requires no primitive
operations other than reads and writes to shared memory. Informally, when a task approaches
a barrier, it must wait until all participating tasks arrived at the same barrier; only then are the
tasks allowed to proceed. A barrier thus separates the multiprocess computation into separate
phases per task that are synchronized with each other.

Figure 2.1 shows a version of the basic butterfly barrier for two tasks that has been adapted
slightly from the original code in [22] to make it easier to understand. This implementation uses
two shared memory locations inBarrier0 and inBarrier1 through which the two processes
communicate. The algorithm is symmetric under interchange of the two tasks. Therefore, we
explain the code from the perspective of task 0.

Assume that task 0 has finished phase n on line 1 and enters the barrier. Task 0 announces
its arrival at the barrier by setting its own flag inBarrier0 to true on line 3. In the busy loop on
line 4, task 0 then waits for its partner to enter the barrier by observing task 1’s inBarrier1 flag.
Once the other task has entered the barrier by arriving on line 3, task 0 proceeds by resetting its
partner’s inBarrier1 flag to false on line 5. By resetting the flag, task 0 acknowledges that it
has noticed task 1’s arrival at the barrier. On line 6, task 0 then waits for task 1 to acknowledge
that is has noticed task 0’s arrival, too. After task 1 has reset the inBarrier0 flag on line 5, task
0 can exit the barrier and continue with phase n+1 starting on line 8.

The purpose of the presented barrier synchronization is to separate the different computation
phases across the two tasks. More formally, the barrier implementation is considered correct if
for any two tasks 0 and 1 the nth phase phase(n) is finished before the next phase phase(n+1)
starts: ∀t,s ∈ {0,1} ∶ phaset(n)→ phases(n+1).

To prove the correctness of the barrier implementation, we name the following operation
executions that occur during the nth call to the barrier by task t:

Pn
t The execution of the last statement p (line 1) in the body of phase n by process t before

entering the barrier.

An
t In the nth call to the barrier, task t announces its arrival by setting its corresponding
inBarrier-flag to true. This corresponds to line 3 in the example.

WAn
t In the nth call to the barrier, task t waits for the arrival of the other task on line 4.

Rn
t In the nth call to the barrier, task t releases the other task’s flag on line 5.
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for any two tasks 0 and 1 the nth phase phase(n) is finished before the next phase phase(n+1)
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the barrier.

An
t In the nth call to the barrier, task t announces its arrival by setting its corresponding
inBarrier-flag to true. This corresponds to line 3 in the example.

WAn
t In the nth call to the barrier, task t waits for the partner task to arrive at the barrier by

observing the inBarrier-flag of the other task. This operation is implemented on line 4.

Rn
t Task t releases its partner’s inBarrier-flag in the nth call to the barrier by setting it to
false on line 5.

WRn
t In the nth call to the barrier, task t waits for the partner task to release t’s inBarrier flag.

This operation is implemented on line 6.

On most systems, a statement such as while(inBarrier0); on line 6 will be translated into
multiple smaller operations that load the current value of inBarrier0, compare the value with
true, and perform a jump depending on the outcome. In a system with preemptive multitasking,
the current task can be interrupted at any time. Therefore, it can happen that task 1 changes the
value of inBarrier0 on line 5 after task 0 read the value of inBarrier0 but before it performed
the comparison. If such interleaving can happen on a sub-statement level the operations are said
to be non-atomic. Because Lamport’s model assumes for non-atomic operations, we can model
relatively complex statements such as the busy loops on lines 4 and 6 as single operations WAn

t
and WRn

t .
Pn

0

An
0

WAn
0

Rn
0

WRn
0

Pn+1
0 Pn

1

An
1

WAn
1

Rn
1

WRn
1

Pn+1
1
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phaset0(n)→ phasep1(n+1).

To prove the correctness of the barrier implementation, we name the following operation
executions that occur during the nth call to the barrier by task t:

Pn
t The execution of the last statement p in the body of phase n by process t before entering

the barrier.

An
t In the nth call to the barrier, task t announces its arrival by setting its corresponding
inBarrier-flag to true. This corresponds to line 3 in the example.

WAn
t In the nth call to the barrier, task t waits for the partner task to arrive at the barrier by

observing the inBarrier-flag of the other task. This operation is implemented on line 4.

Rn
t Task t releases its partner’s inBarrier-flag in the nth call to the barrier by setting it to
false on line 5.

WRn
t In the nth call to the barrier, task t waits for the partner task to release t’s inBarrier flag.

This operation is implemented on line 6.

On most systems, a statement such as while(inBarrier0); on line 6 will be translated into
multiple smaller operations that load the current value of inBarrier0, compare the value with
true, and perform a jump depending on the outcome. In a system with preemptive multitasking,
the current task can be interrupted at any time. Therefore, it can happen that task 1 changes the
value of inBarrier0 on line 5 after task 0 read the value of inBarrier0 but before it performed
the comparison. If such interleaving can happen on a sub-statement level the operations are said
to be non-atomic. Because Lamport’s model assumes for non-atomic operations, we can model
relatively complex statements such as the busy loops on lines 4 and 6 as single operations WAn

t
and WRn

t .
Pn

0

An
0

WAn
0

Rn
0

WRn
0

Pn+1
0 Pn

1

An
1

WAn
1

Rn
1

WRn
1

Pn+1
1

6 CHAPTER 2. BACKGROUND

for any two tasks 0 and 1 the nth phase phase(n) is finished before the next phase phase(n+1)
starts. Using the →-relationship, the correctness criterion can be stated as: ∀t0,t1 ∈ {0,1} ∶
phaset0(n)→ phasep1(n+1).

To prove the correctness of the barrier implementation, we name the following operation
executions that occur during the nth call to the barrier by task t:

Pn
t The execution of the last statement p in the body of phase n by process t before entering

the barrier.

An
t In the nth call to the barrier, task t announces its arrival by setting its corresponding
inBarrier-flag to true. This corresponds to line 3 in the example.

WAn
t In the nth call to the barrier, task t waits for the partner task to arrive at the barrier by

observing the inBarrier-flag of the other task. This operation is implemented on line 4.

Rn
t Task t releases its partner’s inBarrier-flag in the nth call to the barrier by setting it to
false on line 5.

WRn
t In the nth call to the barrier, task t waits for the partner task to release t’s inBarrier flag.

This operation is implemented on line 6.

On most systems, a statement such as while(inBarrier0); on line 6 will be translated into
multiple smaller operations that load the current value of inBarrier0, compare the value with
true, and perform a jump depending on the outcome. In a system with preemptive multitasking,
the current task can be interrupted at any time. Therefore, it can happen that task 1 changes the
value of inBarrier0 on line 5 after task 0 read the value of inBarrier0 but before it performed
the comparison. If such interleaving can happen on a sub-statement level the operations are said
to be non-atomic. Because Lamport’s model assumes for non-atomic operations, we can model
relatively complex statements such as the busy loops on lines 4 and 6 as single operations WAn

t
and WRn

t .
Pn

0

An
0

WAn
0

Rn
0

WRn
0

Pn+1
0 Pn

1

An
1

WAn
1

Rn
1

WRn
1

Pn+1
1

6 CHAPTER 2. BACKGROUND

for any two tasks 0 and 1 the nth phase phase(n) is finished before the next phase phase(n+1)
starts. Using the →-relationship, the correctness criterion can be stated as: ∀t0,t1 ∈ {0,1} ∶
phaset0(n)→ phasep1(n+1).

To prove the correctness of the barrier implementation, we name the following operation
executions that occur during the nth call to the barrier by task t:

Pn
t The execution of the last statement p in the body of phase n by process t before entering

the barrier.

An
t In the nth call to the barrier, task t announces its arrival by setting its corresponding
inBarrier-flag to true. This corresponds to line 3 in the example.

WAn
t In the nth call to the barrier, task t waits for the partner task to arrive at the barrier by

observing the inBarrier-flag of the other task. This operation is implemented on line 4.

Rn
t Task t releases its partner’s inBarrier-flag in the nth call to the barrier by setting it to
false on line 5.

WRn
t In the nth call to the barrier, task t waits for the partner task to release t’s inBarrier flag.

This operation is implemented on line 6.

On most systems, a statement such as while(inBarrier0); on line 6 will be translated into
multiple smaller operations that load the current value of inBarrier0, compare the value with
true, and perform a jump depending on the outcome. In a system with preemptive multitasking,
the current task can be interrupted at any time. Therefore, it can happen that task 1 changes the
value of inBarrier0 on line 5 after task 0 read the value of inBarrier0 but before it performed
the comparison. If such interleaving can happen on a sub-statement level the operations are said
to be non-atomic. Because Lamport’s model assumes for non-atomic operations, we can model
relatively complex statements such as the busy loops on lines 4 and 6 as single operations WAn

t
and WRn

t .
Pn

0

An
0

WAn
0

Rn
0

WRn
0

Pn+1
0 Pn

1

An
1

WAn
1

Rn
1

WRn
1

Pn+1
1

6 CHAPTER 2. BACKGROUND

for any two tasks 0 and 1 the nth phase phase(n) is finished before the next phase phase(n+1)
starts. Using the →-relationship, the correctness criterion can be stated as: ∀t0,t1 ∈ {0,1} ∶
phaset0(n)→ phasep1(n+1).

To prove the correctness of the barrier implementation, we name the following operation
executions that occur during the nth call to the barrier by task t:

Pn
t The execution of the last statement p in the body of phase n by process t before entering

the barrier.

An
t In the nth call to the barrier, task t announces its arrival by setting its corresponding
inBarrier-flag to true. This corresponds to line 3 in the example.

WAn
t In the nth call to the barrier, task t waits for the partner task to arrive at the barrier by

observing the inBarrier-flag of the other task. This operation is implemented on line 4.

Rn
t Task t releases its partner’s inBarrier-flag in the nth call to the barrier by setting it to
false on line 5.

WRn
t In the nth call to the barrier, task t waits for the partner task to release t’s inBarrier flag.

This operation is implemented on line 6.

On most systems, a statement such as while(inBarrier0); on line 6 will be translated into
multiple smaller operations that load the current value of inBarrier0, compare the value with
true, and perform a jump depending on the outcome. In a system with preemptive multitasking,
the current task can be interrupted at any time. Therefore, it can happen that task 1 changes the
value of inBarrier0 on line 5 after task 0 read the value of inBarrier0 but before it performed
the comparison. If such interleaving can happen on a sub-statement level the operations are said
to be non-atomic. Because Lamport’s model assumes for non-atomic operations, we can model
relatively complex statements such as the busy loops on lines 4 and 6 as single operations WAn

t
and WRn

t .
Pn

0

An
0

WAn
0

Rn
0

WRn
0

Pn+1
0 Pn

1

An
1

WAn
1

Rn
1

WRn
1

Pn+1
1

6 CHAPTER 2. BACKGROUND

for any two tasks 0 and 1 the nth phase phase(n) is finished before the next phase phase(n+1)
starts. Using the →-relationship, the correctness criterion can be stated as: ∀t0,t1 ∈ {0,1} ∶
phaset0(n)→ phasep1(n+1).
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An
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On most systems, a statement such as while(inBarrier0); on line 6 will be translated into
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An
t In the nth call to the barrier, task t announces its arrival by setting its corresponding
inBarrier-flag to true. This corresponds to line 3 in the example.
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observing the inBarrier-flag of the other task. This operation is implemented on line 4.
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multiple smaller operations that load the current value of inBarrier0, compare the value with
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Figure 2.2: Initial relations for the correctness proof of the Butterfly barrier.

WRn
t In the nth call to the barrier, task t waits for the partner task to release t’s inBarrier flag.

The last read of the loop obtains the value false. This operation is implemented on line
6.

On most systems, a statement such as while(inBarrier0) will be translated into multiple
smaller operations that load the current value of inBarrier0, compare the value with true,
and perform a jump depending on the outcome. In a system with preemptive multitasking, the
current task can be interrupted at any time. Therefore, it can happen that task 1 changes the
value of inBarrier0 on line 5 after task 0 read the value of inBarrier0 but before it performed
the comparison. If such interleaving can happen on a sub-statement level the operations are said
to be non-atomic. Because Lamport’s model allows for non-atomic operations, we can model
even complex statements such as the busy loops on lines 4 and 6 as single operations WAn

t and
WRn

t .
The correctness proof of the Butterfly barrier uses axioms A1–A4 and the initial relations

shown in Figure 2.2. The →-relations in Figure 2.2 specify the original program order for each
task. Operations WAn

t and WRn
t of task t are affected by the execution of An

s and Rn
s respectively

executed by the partner task s. Because we know that the last operation of each loop—exiting
the loop through a jump—comes after the corresponding write to the flag by the other thread,
we can state that the write event precedes at least the jump event of the corresponding loop.
This correlation allows us to add the four inter-task ⇢-relations to the set of initial relations.

Proof. Proving the basic correctness property ∀t,s ∈ {0,1} ∶ Pn
t → Pn+1

s is done for each combi-
nation of tasks separately:

Case A: Pn
0 → Pn+1

0 . Directly from transitive program-order (Axiom A1).

Case B: Pn
1 → Pn+1

1 . Symmetric to the previous case.
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Case C: Pn
0 → Pn+1

1 . By applying Axiom A4, we get Pn
0 → Rn

1; therefore, transitively Pn
0 → Pn+1

1
(Axiom A1).

Case D: Pn
1 → Pn+1

0 . Symmetric to the previous case.

This proof verifies the basic correctness property for a single invocation of the barrier. For
separating two phases in two tasks, the simple signaling mechanism via shared flags on lines
3, 4, and 5 is sufficient. Therefore the proof did not need to take the WRn

t operation into
account. However, a full correctness proof must additionally show that a program using the
barrier progresses, does not deadlock, and that the phases are actually executed in lock-step
(that is, if task 0 is in phase n, task 1 cannot be in any phase ≠ n).

We can proof the lock-step property by showing that a task always waits for the other task
to exit the loop on line 4 before it continues.

Proof. Before starting the next phase n+1, a task t always waits for the other task s to exit the
loop on line 4. In other words, WAn

t→Pn+1
s . This follows directly from axiom A4.

2.1.3 Can-affect relations and Java

The proof for the butterfly barrier shows that the barrier correctly separates the individual phases
across all tasks. However, it does not proof that the barrier does not deadlock. As an exam-
ple, assume that the busy loop on line 6 were not present in task 0. In this case, the write to
inBarrier1 by task 0 on line 5 would race with the write to inBarrier1 in the next phase of
task 1 on line 3. Therefore, it can happen that task 0 overwrites inBarrier1 to false after task
1 has set it to true. In this case, task 0 will deadlock in the next call to the barrier on line 3
because the announcement of task 1’s arrival got lost.

To show that the Butterfly barrier does not deadlock we would have to prove that there are no
races on the updates of the flags inBarrier0 and inBarrier1 by proving that the write accesses
are ordered:

1. In the same phase: ∀t,s ∈ {0,1} ∶ An
t → Rn

s ; and

2. Across phases: ∀t,s ∈ {0,1} ∶ Rn
t → An+1

s .

The axioms and the initial relations we have for the butterfly barrier, however, are not suffi-
cient to prove deadlock freedom. Take, for example, the path An

0⇢WAn
1→ Rn

1. Axiom A3 only
allows us to deduce An

0 ⇢ Rn
1 but not An

0 → Rn
1. This is, because operations are not necessarily

atomic and, depending on the concrete runtime environment, the update to inBarrier0 in op-
eration An

0 may—in theory—involve multiple single steps. Assume a hypothetical (albeit very
odd) system where writes to memory are visible immediately but must be additionally commit-
ted in a second step. In this system, it can happen that task 0 announces its arrival by setting
inBarrier to true, but the write is not yet committed. Task 1 then sees the arrival of task 0,
exits the loop in WAn

1 and sets and commits inBarrier0 to false in Rn
1. Finally task 0 would

resume and commit the write of inBarrier0. The previous write by task 1 is lost, resulting in a
deadlock.
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Figure 2.3: Types of relations between two operations.

A memory model where values are visible before they are committed is obviously rather
exotic—but possible. A more realistic cause for a deadlock is when updates of a flag are not
propagated to the other task at all. For example, without further knowledge about multiple tasks
it is legal for a compiler to keep the inBarrier0 flag in a register within the scope of the method.
In this case, updates to the flag would not make it to main memory at all, resulting in a deadlock
in the other task. A deadlock can also occur if the update to the flag only goes into the cache of
one task but is not propagated into the cache of the other task.

In Java, this deadlock problem can be solved by declaring the two fields inBlock0 and
inBlock1 as volatile. The Java memory model [45, 75] guarantees that update operations of
volatile fields are atomic as far as the Lamport model is concerned. This allows us to give a
stronger meaning to the ⇢-relation: For a volatile read or write operation A, A�B iff all events
in A precedes at least one event in B.

Figure 2.3 compares the different relation types graphically. The can-affect relation in Lam-
port’s original work states that the execution interval of one operation has started before the
other operation ends. This is depicted by the arrow from the start of the one interval to the end
of the other. In contrast, Java guarantees that if a task observes a specific value by reading a
volatile field, the write operation that wrote this value has been completed.

The guarantee that a volatile write operation has finished if the value was observed by
another task allows us to formulate the following two axioms:

A7. A�B→C implies A→C.

If operation A is a write to a volatile field and the write was observed by B then operation
C that starts after B also starts after A.

A8. For all other cases,� is treated like ⇢.

If the flags inBarrier0 and inBarrier1 are declared volatile we can now prove that the
Butterfly barrier is deadlock free by proving that there are no concurrent write races on either
flag:

Proof. The write operations to the inBarrier0 flag are ordered both within phase n and between
subsequent phases n and n+1. Only operations An

0 and Rn
1 write inBarrier0 and it is sufficient

to show the following two cases:

Case A: An
0→ Rn

1. Because inBarrier0 is volatile we know that An
0� WAn

1→Rn
1 and therefore

An
0→ Rn

1 (Axiom A7).

Case B: Rn
1→ An+1

0 . Because inBarrier0 is volatile we know that Rn
1� WRn

0 → Pn+1
0 → An+1

0
and therefore transitively An

0→ Rn
1 (Axioms A1 and A7).



14 CHAPTER 2. BACKGROUND

Proving the ordering of write operations to flag inBarrier1 is analogous to the previous
proof.

2.2 Task schedules

Because Lamport’s model makes no assumptions about the atomicity of operations we can use
the same principal model for analyzing a system on any level of detail: By combining multiple
operations into a single operation (and updating the relations accordingly) we can abstract away
detail and raise a lower-level abstraction to a higher level.

This abstraction process can be formalized as creating higher-level views of lower-level
system executions. Following [61] in general and [9] in particular we establish the following
two definitions.

Definition1. A triple (O,→,⇢), where O is a (finite) set of operations satisfying Axioms
A1-A5, is called a system execution.

The set of operationsO is taken to be the actions performed by the program during a particu-
lar execution. A higher-level view of a system execution can be created by combining elements
of O into subsets of O and establishing appropriate →-relations and ⇢-relations between the
new subsets.

Definition2. A higher-level view of a system execution is a collection H of subsets S of O
satisfying the following conditions:

H1. Each set S ∈H is nonempty.

H2. No element of O is in more than a finite number of the sets in H.

H3. Every element of O is in some set S ∈H.

The elements of H are called higher-level operation executions. If H is a higher-level view,
relations →∗ and ⇢∗ are induced on H by

H4. S1→∗ S2 iff A→ B for all A ∈ S1,B ∈ S2; and

H5. S1⇢∗ S2 iff A⇢ B or A = B for some A ∈ S1,B ∈ S2.

It can be shown that a higher-level view H of a system execution together with the induced
relations →∗ and ⇢∗ is again a system execution (H,→∗,⇢∗). [9]

Figure 2.4 depicts a higher-level view of the butterfly barrier system execution from Figure
2.2 where the internal operations An

t , WAn
t , Rn

t , and WRn
t have been combined into a single

Arriven
t operation for each task. The rules for constructing this higher-level view allow us to

retain the happens-before relation between the operations of the previous phase Pn
t and the

subsequent phase Pn+1
t .
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Task 0
1 \\before barrier
2
3 inBarrier0 = true;
4 while(! inBarrier1);
5 inBarrier1 = false;
6 while(inBarrier0);
7
8 \\after barrier

Task 1
\\before barrier

inBarrier1 = true;
while(! inBarrier0);
inBarrier0 = false;
while(inBarrier1);

\\after barrier

//phase #n

//announce arrival of this task
//wait for other task to arrive
//release other task
//wait for other task to release this

//phase #n+1

Figure 2.1: Butterfly Barrier for Two Tasks.

on line 4, task 0 then waits for its partner to enter the barrier by observing the inBarrier1 flag.
Once the other task has entered, task 0 proceeds by resetting its partner’s inBarrier1 flag to
false on line 5. By resetting the flag, task 0 acknowledges that it has noticed task 1’s arrival at
the barrier. On line 6, task 0 then waits for task 1 to acknowledge the task 0’s arrival and release
the inBarrier0 flag. After task 1 has reset the inBarrier0 flag, task 0 can exit the barrier and
continue with phase n+1 starting on line 6.

The purpose of the presented barrier synchronization is to separate the different computation
phases across the two tasks. More formally, the barrier implementation is considered correct if
for any two tasks 0 and 1 the nth phase phase(n) is finished before the next phase phase(n+1)
starts: ∀t,s ∈ {0,1} ∶ phaset(n)→ phases(n+1).

To prove the correctness of the barrier implementation, we name the following operation
executions that occur during the nth call to the barrier by task t:

Acquiren
0

Acquiren
1

Pn
t The execution of the last statement p in the body of phase n by process t before entering

the barrier.

An
t In the nth call to the barrier, task t announces its arrival by setting its corresponding
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Figure 2.4: Higher-level view of the butterfly barrier from Figure 2.2. Internal details of the
barrier have been abstracted into distinct Arrive operations.

Definition1. A triple (S,→,⇢), where S is a (finite) set of operations, satisfying Axioms A1-A5
is called a system execution.

The set of operations S is taken to be the actions performed by the program during a particu-

lar execution. A higher-level view of a system execution can be created by combining elements
of S into subsets of S and establishing appropriate→-relationships and⇢-relationships between
the new subsets.

Definition2. A higher-level view of a system execution is a collection H of subsets of S satis-
fying the following conditions:

H1. Each set G ∈H is nonempty.

H2. No element of S is in more than a finite number of the sets in H.

H3. Every element of S is in some set G ∈H.

The elements of H are called higher-level operation executions. If H is a higher-level view,
relations →∗ and ⇢∗ are induced on H by

H4. G1→∗ G2 iff A→ B for all A ∈G1,B ∈G2; and

H5. G1⇢∗ G2 iff A⇢ B or A = B for some A ∈G1,B ∈G2.

It can be shown that a higher-level view H of a system execution together with the induced
relations →∗ and ⇢∗ is again a system execution (H,→∗,⇢∗)
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In this dissertation, we are interested in exploiting task-ordering information. For this pur-
pose, we define tasks as:
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phases across the two tasks. More formally, the barrier implementation is considered correct if
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6.

On most systems, a statement such as while(inBarrier0); on line 6 will be translated into
multiple smaller operations that load the current value of inBarrier0, compare the value with
true, and perform a jump depending on the outcome. In a system with preemptive multitasking,
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barrier have been abstracted into distinct Arrive operations.
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The set of operations S is taken to be the actions performed by the program during a particu-

lar execution. A higher-level view of a system execution can be created by combining elements
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Figure 2.4: Higher-level view of the butterfly barrier from Figure 2.2. Internal details of the
barrier have been abstracted into distinct Arrive operations. The original low-level operations
and happens-before relations are shown in white.

Hiding the inner workings of the barrier can make the system easier to understand. How-
ever, by reducing the level of detail it can become be impossible to prove certain proper-
ties in a higher-level system execution. For example, while the basic correctness property∀t,s ∈ {0,1} ∶ Pn

t → Pn+1
s of the butterfly barrier can still be proven in the higher-level view

(directly by applying axiom A4), the information that the phases execute in lock-step (that is,
that a task t waits for the other task s to exit the barrier) is lost.

In this dissertation, we are interested in exploiting task-ordering information. For this pur-
pose, we define tasks as:

Definition3. A task is a named single execution path through a set of program instructions that
has its own execution context. 2

A task is a named entity in the sense that it has an identity that can be referenced and
compared with other tasks. In many systems, such as Java, tasks are first-class objects that
can be manipulated, passed, and stored just like other objects in the language. In those cases,
the task name is equal to the object identity. In other systems, for example a language with
a syntactic fork/join construct, tasks may not be represented as language-level objects that are
accessible by the programmer. In those cases, the task name can be thought of the task identity
maintained by the runtime.

The function inTask associates every operation o ∈ O of a system execution O with the
corresponding task name t of all task names T that executes the operation:

Definition4. The function inTask ∶ O � T is a total, surjective function that associates each
operation o ∈O with exactly one task name t ∈ T , namely the task that executes o.

2We use the notion of tasks to represent different but similar concepts from different parallel programming
libraries and languages. Most importantly, in the case of (Java) threads, tasks and threads are the same thing.
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Task 0 Task 1

Figure 2.5: Task schedule of the butterfly barrier from Figure 2.2.

A task schedule is then a higher-level view H of a system execution O where all operations
that are executed by the same task t are grouped into a single set St .

Definition5. A task schedule is a higher-level view (H,→∗,⇢∗) of a system execution where
for every task t ∈ T there is exactly one higher-level operation St ∈H containing all the opera-
tions o that are executed in t: St ∶= {o ∈O � inTask(o) = t}.

The task schedule for the butterfly barrier example is shown in Figure 2.5. All the internal
operations of the tasks are abstracted away, retaining only the two high-level operations repre-
senting the tasks themselves together with two⇢-relations representing the interactions through
the barrier and other shared memory.

This example shows that the information contained in the task schedule is sensitive to the
way how tasks are used in the program. In this example, the task schedule does not contain
much useful information (other than task 0 will not end before task 1 has started and vice versa)
because the butterfly barrier achieves synchronization through low-level operations. Low-level
operations are difficult to analyze for a compiler, however, because of the imprecision inher-
ent in a static analysis. It may be impossible for the compiler, for example, to know that the
variables inBarrier0 and inBarrier1 actually point to the same memory addresses in both
tasks.

Chapter 3 presents a variant of a barrier that does not use low-level operations for synchro-
nization but high-level tasks with explicit happens-before ordering constraints. Because com-
pilers are generally better at lowering the abstraction level than at extracting high-level models
from low-level code, starting from a program with more tasks and explicit happens-before con-
straints makes it easier for the compiler to extract meaningful information about the program
behavior.

2.3 Sources of task-order information

Over the last decade, much research and engineering effort has been put into designing lan-
guages and libraries that simplify concurrent programming. In general, the trend of modern
parallelism solutions is shifting away from the unrestricted flexibility provided by processes
and threads to more restricted programming models with stronger support for modeling task
ordering.

Current parallel programming libraries and languages allow the programmer to specify task
orderings with varying degrees of explicitness. For example, systems such as X10 [27] or
OpenMP [93] syntactically enforce a fork/join style of programming where the forked sub-
tasks are ordered with respect to the joining task. Other systems, such as Apple’s Grand Central
Dispatch [12], Intel’s Threading Building Blocks [99], Microsoft’s Task Parallel Library [68],
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or Intervals [81] allow the programmer to explicitly define happens-before relations between
task objects thus avoiding the limitations of lexically scoped parallelism.

Extracting task-order information from the program source can be more or less difficult for
a compiler, depending on the parallel language or library that is being used. Figure 2.3 shows
three examples written in three different languages using three different parallelism mechanisms
to implement a simple fork/join pattern. Each program begins with a sequential phase /*A*/
before forking three parallel tasks /*B*/. The parallel tasks are then joined and the programs
end with another sequential phase /*C*/.

Java threads: The first program in Panel 2.6(a) uses Java’s built-in threads. After the sequen-
tial phase /*A*/, the method doForkJoin() creates three Thread objects in a loop and stores
them in an array for later reference. The run() method of the threads are overridden to contain
the code for the parallel phase /*B*/. After having created each thread object, the threads are
actually spawned by calling start(). The main thread then waits for all threads to finish by
calling join() on each thread stored in the thread array before it continues with the—again
sequential—phase /*C*/.

Even though this Java program is relatively trivial, it demonstrates some of the difficulties
a compiler may have when trying to extract task-order information. In order to reason about
the ordered-ness of the parallel phases /*B*/ and the sequential phase /*C*/, the compiler must
deduce that the call to join() is called on all the forked threads. This requires information about
whether or not the array ts may be aliased or modified by another thread and whether or not
the two for loops execute the same number of times. Such a detailed analysis quickly becomes
too imprecise or even computationally infeasible when the corresponding fork/join logic is not
syntactically located in the same method (as it is in this example) but spread across methods.

The unrestricted nature of threads compared with the low-level synchronization primitives
makes it difficult for compilers to extract meaningful task-order information from Java programs
using threads. Approaches such as [90, 28, 14] were successful mostly in those cases where the
code that creates and joins threads is syntactically located in the same method.

OpenMP fork/join: The second Panel (b) of Figure 2.3 shows a C program using OpenMP [93].
OpenMP is a language extension that has the fork/join pattern built in. OpenMP therefore makes
this example trivial to implement.

The function doForkJoin() starts with the sequential phase /*A*/. Through the #pragma
annotation on the subsequent for-loop, the programmer indicates to the OpenMP compiler and
runtime that the for-loop can be parallelized instead of executing the three loop iterations se-
quentially one after the other. The main thread of the program will implicitly wait after the
for-loop until all the parallel /*B*/ tasks have finished. Then the main thread continues with
the sequential phase /*C*/.

When a parallelism pattern is enforced syntactically, such as the fork/join in this example, it
is often straight forward for the compiler to extract information about the task ordering. Various
algorithms for computing execution-order information, such as [4], have been developed for
systems where method-local syntactic reasoning is sufficient. Because in fork/join-style sys-
tems the parallelism constructs are syntactically restricted to a single method, they are often
seen as less flexible than unrestricted models such as Java threads.
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void doForkJoin() {

/*A*/

//fork
Thread[] ts = new Thread[3];
for(int i=0; i<3; i++) {
ts[i] = new Thread() {

public void run() {

/*B*/

}};
ts[i].start();

}

//join
for(int i=0; i<3; i++)
ts[i].join();

/*C*/

}

(a) Java threads

void doForkJoin() {

/*A*/

#pragma omp parallel for
for(int i=0; i<3; i++) {

/*B*/

}

/*C*/

}

(b) OpenMP fork/join, C

struct ForkJoinTask: public task {
task* execute() {

/*A*/

//create join task
JoinTask& join =

*new(allocate_continuation())
JoinTask();

//set ref_count to 3 children
join.set_ref_count(3);

//fork
for(int i=0; i<3; i++) {
ForkTask& t =

*new(join.allocate_child())
ForkTask();

spawn(t);
}

return NULL;
}

};

struct ForkTask: public task {
task* execute() {

/*B*/

return NULL;
}

};

struct JoinTask: public task {
task* execute() {

/*C*/

return NULL;
}

};

(c) Intel Threading Building Blocks, C++

Figure 2.6: Comparison of fork/join constructs using different languages and parallelism mech-
anisms. After the sequential phase /*A*/, three parallel tasks /*B*/ are spawned and joined
before the sequential phase /*C*/.
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Intel Threading Building Blocks: The third Panel 2.6(c) shows the fork/join pattern im-
plemented with Intel’s Threading Building Blocks (TBB). We chose TBB as an example for
a modern threading library that positions itself somewhere between unrestricted threads and
syntactically restricted fork/join frameworks.

Libraries such as TBB allow the programmer to create and spawn tasks and explicitly spec-
ify task-ordering information, such as “task /*A*/ must finish before task /*B*/”. The task
ordering constraints are created in the program by either explicitly calling the libraries’ API
functions or implicitly by the way the libraries’ data-structures and API is designed.

In addition to tasks and task-order management functionalities, many threading libraries
provide syntactic shortcuts and helper functions that simplify common parallelism patterns. For
example, TBB provides a built-in fork/join construct that would result in code very similar to
the OpenMP version of the fork/join example from Figure 2.3. However, for illustrative purposes
we present how tasks and their ordering relations can be directly managed in TBB.

The TBB example from Panel 2.6(c) defines three classes as subtypes of type task:
ForkJoinTask, ForkTask, and JoinTask. ForkJoinTask plays the role of the main task and
contains the execute() method that corresponds to the doForkJoin() of the other two ver-
sions. This method starts with the sequential /*A*/ phase. After that, the main task creates a
continuation task of type JoinTask which will join the forked sub-tasks and execute the final
sequential phase /*C*/. The ForkJoinTask then creates the three instances of ForkTask inside
the for-loop and specifies them to be children of the join continuation task.

In TBB, when a parent task creates a continuation task, the parent task exits and does not
block on its children. Instead, the continuation task takes the parent task’s place in the scheduler.
The children then subsequently run, and after they (or their continuations) finish, the continua-
tion task starts running. This effectively creates a happens-before ordering between the children
and the join task.

While many approaches have been developed to extract task-order information from Java
programs using threads and from syntactically restricted fork/join frameworks, only little work
has been done for exploiting the ordering information available in higher-level threading li-
braries such as TBB.

2.4 Summary

Lamport’s model defines a partial ordering of program operations through happens-before and
can-affect relations. This model has been designed specifically to reason about the correctness
of multithreaded programs but it has also influenced areas other than formal proofs. One famous
example is the Java Memory Model (JMM) that adapted Lamport’s happens-before relations to
form the semantic basis of the Java language, compiler, and runtime system.

The flexibility and wide applicability of Lamport’s model comes mainly from the fact that
operations are not required to be atomic but are modeled as sets of single events. Because
operations are not single indivisible events, multiple lower-level operations can be combined
into higher-level operations, abstracting away low-level detail. Therefore, the same model—
operations plus happens-before and can-affect relations—can be used to analyze a system on
different levels of abstraction.
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We present task schedules as the highest level of abstraction for parallel programs. For a
given program execution consisting of low-level operations and their relations, we generate a
task schedule by merging all operations that execute in the same task and update the relations
with other operations accordingly. This process stops when the schedule contains exactly one
operation per task.

Typically, a compiler does not have the detailed information contained in runtime task
schedules. Rather, the compiler must statically compute an abstract, conservative approxi-
mation of all possible runtime schedules by inspecting the program code. While the lack of
explicit ordering information in unstructured thread-based languages makes it difficult to stati-
cally compute meaningful schedules, many modern parallel languages and libraries offer more
opportunities to extract ordering information.



3
A generic task model with ordering

information

This chapter describes a model for fine-grained parallelism based on lightweight tasks with
explicit happens-before relations. This model is general enough to express a wide variety of
existing concurrency patterns: structured fork/join style parallelism, semi-structured tasks with
ordering information, and unstructured threads.

3.1 Tasks with explicit scheduling constraints

The basic building block of the execution model is a task. A task is similar to a method in that it
contains code that is executed in the context of a this-object (or the class, in the case of static
methods/tasks). Unlike a method, however, one does not call a task, which would result in the
immediate execution of the body, but instead schedules it for later execution. In the program,
the currently executing task can be referenced using the keyword now.

As an example, consider a task T() that starts two long-running computations Compute1()
and Compute2() and schedules a task Print() that will print the result after the computations
have finished:
task T() {
Task print = schedule this.Print();
Task compute1 = schedule this.Compute1();
Task compute2 = schedule this.Compute2();
compute1→print;
compute2→print;

}

A task schedule is represented as a graph of object.Task() pairs. The statement schedule
this.Print(), for example, creates a new node in the schedule with the this object and the

Print() task method and returns an object of type Task representing that node. Like any other
object, Task objects can be kept in local variables, passed around as parameters, and stored in
fields.

At runtime, a scheduler constantly chooses tasks that are eligible for execution and starts
them. The order in which the scheduler is allowed to start the tasks is specified by the edges in
the schedule graph. In the example, the statement compute1→print creates an explicit happens-
before relation between the two referenced task objects and adds the happens-before edge this
.Compute1()→this.Print() to the schedule. In the above program, the scheduler guarantees

21
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that both tasks Compute1() and Compute2() have finished execution before task Print() is
started. The tasks Compute1() and Compute2(), however, are not ordered and may therefore be
executed in parallel.

Whenever a new task is scheduled, the scheduler automatically adds an initial happens-
before relation between the currently executing task and the newly created task node. In the
example method T() those implicit edges have a similar effect as if the programmer were to
explicitly add →-edges between now and the subtasks, as shown in the following modification
of the previous example:

task T() {
Task print = schedule this.Print();
now→print; \\implicit

Task compute1 = schedule this.Compute1();
now→compute1; \\implicit

Task compute2 = schedule this.Compute2();
now→compute2; \\implicit

compute1→print;
compute2→print;

}

There is one important semantic difference between implicit creation edges and explicitly
adding the edge between now and a subtask, however. As opposed to a manually added edge,
an implicit edge prevents the immediate execution of the newly scheduled tasks and enables
the current task to add additional constraints to the schedule before the task finishes. In the
example above, if there were no implicit creation edges, the scheduler would be allowed to start
the print task already before the statement now→print was executed.

There are multiple designs possible to address the problem of delaying the execution of a
task until the initial →-constraints have been added. For example, we could require that a task
must be explicitly started (e.g., by calling a start() method) after it has been scheduled and the→-relations have been added. Another possibility is to define a more declarative semantics for
the →-statements where the →-statements are not executed one-by-one in a sequential fashion
but where the compiler collects all schedule sites and their corresponding →-statements inside
a method (regardless of their position in the source code) into a single atomic operation. The
design decision of delaying sub-tasks until the parent task has finished has been made to keep
the model as small and general as possible. Other behaviors can be achieved by program trans-
formations. For example, the effect of and explicit Task.start() method can be modeled by a
transformation similar to continuation passing style: at each call to start() the parent task is
split into two tasks, one for the prelude and one for the remainder of the task [10].
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3.2 Task objects as parameters: The now happens-before
later pattern

A task method can take task objects as parameters. One common use for task parameters is
to allow task methods to schedule subtasks relative to tasks that have been scheduled outside.
In the next example, the task method Compute() schedules additional subtasks to perform the
computation but all those subtasks must have finished before the Print() task is allowed exe-
cute.

1 task T() {
2 Task print = schedule this.Print();
3 //pass reference to print task:
4 Task compute = schedule this.Compute(print);
5 compute→print;
6 }
7

8 task Compute(Task later) {
9 while(moreTasks()) {

10 Task subtask = schedule this.Subtask(later);
11 //schedule subtask before later
12 subtask→later;
13 }
14 }

When scheduling the Compute() task on line 4, task T() passes the print task object as
a parameter to Compute(). Line 5 further schedules the print task to happen after compute.
Because the execution of print is delayed at least until compute has been finished, the Compute
() task can schedule additional subtasks and, on line 12, order them to happen before the passed
print task object.

In Compute() the reference later is passed along even further to Subtask(), allowing
Subtask() (and its subtasks, if there are any) to push the execution of the Print() task fur-
ther and further into the future until the whole computation has finished. Once the subtasks
terminate without inserting new tasks, the scheduler will be able to execute Print().

We call the pattern of passing a task that has been scheduled to happen after the current
task now the now happens-before later pattern. This pattern allows the current task to arbitrarily
delay already scheduled tasks by ordering subtasks to happen before. The now happens-before
later pattern demonstrates the increased flexibility of the presented task model over lexically
scoped fork/join models.

3.3 Example: Barrier synchronization

This section discusses an example from the sor benchmark. The original version is imple-
mented using a barrier. However, as noted earlier in Chapter 2, barriers as low-level syn-
chronization primitives are difficult to analyze statically. Therefore, this section additionally
presents a re-modeled version of the original code where the barrier is replaced with explicit
task synchronization that can be analyzed statically by an analysis such as the schedule analysis
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introduced in Chapter 4.

3.3.1 Example with threads and barriers

1 class Sor {
2 Barrier barrier = new Barrier(NumWorkers);
3 Worker[] workers = new Worker[NumWorkers];
4

5 void begin() {
6 for(int i=0; i<NumWorkers; i++) {
7 workers[i] = new Worker(this, i);
8 workers[i].start();
9 }

10 this.end();
11 }
12 void end() {
13 for(int i=0; i<NumWorkers; i++) {
14 try {
15 workers[i].join();
16 } catch(InterruptedException e) {}
17 }
18 }
19 }
20

21 class Worker extends Thread {
22 Sor sor; int id;
23

24 Worker(Sor sor, int id) {
25 this.sor = sor;
26 this.id = id;
27 }
28 void run() {
29 for(int count=0; count<NumRounds; count++) {
30 /* phase 1 ... */
31 this.sor.barrier.wait();
32 /* phase 2 ... */
33 this.sor.barrier.wait();
34 }
35 }
36 }

Figure 3.1: Simplified version of the sor benchmark using threads and barriers.

Figure 3.1 shows a simplified excerpt of the sor benchmark (successive over-relaxation over
a 2D grid). In method begin(), sor first starts a number of worker threads on line 8 before the
main thread waits for all workers to finish on line 15 in method end().

Every worker successively refines the overall result by repeating the same computation a
number of times. Each worker executes the same loop on line 29. As a data-parallel application,
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Figure 3.2: One main and three worker threads w1, w2, and w3 while executing the example from
Figure 3.1. Dashed lines depict periods where a thread is blocked.

the workers generally work in parallel on separate parts of the input data (not shown in the
example). Due to data-dependencies, however, all workers must synchronize twice in every
iteration on lines 31 and 33 to separate the two computation phases on lines 30 and 32.

The execution behavior of this program is depicted in Figure 3.2. The basic pattern imple-
mented by the Sor class is a fork and successive join of the worker threads. For the correct
functioning of the program it is important that all workers execute the loop the same number
of times and that on each iteration all workers call the same barriers in the same order. If one
worker would exit the loop early, for example, the barrier will block the other workers resulting
in a deadlock.

The implicit dependency on the number of loop iterations and the number of calls to barrier
.wait() each worker executes makes this example hard to analyze statically. The problem is
that it is non-trivial to reason about what phases of the different tasks may interleave and what
phases are guaranteed to be ordered. For example, in the presence of aliasing it can be difficult
to reason that all threads always synchronize on the same barrier object.

3.3.2 Example with explicit scheduling constraints

Figure 3.3 shows the Sor class, rewritten to use explicit scheduling constraints instead of threads
and barriers. The fork/join pattern of the original code was transformed into a scheduling of the
End() task on line 9 and passing the end task object as a parameter from iteration to iteration
on line 10 (and then indirectly on line 18) until the computation has finished.

The biggest change to the original example in Figure 3.1 is that the original loop from line
29 was moved out of the workers and transformed into the recursive task Round() in the Sor
class. Instead of letting every worker execute the loop separately, the Sor object works as an
orchestrator, scheduling the execution of the two work phases for each worker in each iteration.

The task Round() implements one iteration. After testing on line 17 whether to continue,
line 18 schedules the next iteration and orders it before the original End() task on line 19.

Line 21 schedules the Barrier() task. Barrier() is only used for ordering purposes and
has no functional behavior. On lines 23 to 28 the Sor class then schedules the two phases for
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1 class Sor {
2 Worker[] workers = new Worker[NumWorkers];
3 int NumRounds = 100;
4

5 task Begin() {
6 for(int i=0; i<NumWorkers; i++) {
7 this.workers[i] = new Worker(this, i);
8 }
9 Task end = schedule this.End();

10 Task round = schedule this.Round(0, end);
11 round → end;
12 }
13

14 task End() { /* nothing to do */ }
15

16 task Round(int count, Task later) {
17 if(count < NumRounds) {
18 Task nextRound = schedule this.Round(count++, later);
19 nextRound→later;
20

21 Task barrier = schedule this.Barrier();
22 for(int i=0; i<workers.length; i++) {
23 Task phase1 = schedule workers[i].Phase1();
24 Task phase2 = schedule workers[i].Phase2();
25

26 phase1→barrier;
27 barrier→phase2;
28 phase2→nextRound;
29 }
30 }
31 }
32

33 task Barrier() { /* nothing to do */ }
34 }

Figure 3.3: The sor benchmark from Figure 3.1 using explicit scheduling constraints.

each worker for this iteration and orders the Phase1() before the barrier and Phase2() after the
barrier but before the next iteration. After the Round() task for one iteration has finished, the
scheduler can continue to start executing all the Phase1() tasks of the workers.

For the Round() method, the analysis presented in this paper statically extracts the schedule
shown in Figure 3.4. The unfilled circle stands for the logical now task that executes Round().
The double-headed arrows represent the happens-before edges that are implicitly added between
the creating task now and the created tasks. The other edges indicate explicit happens-before
relations resulting from the →-statements in Round(). Because the Phase1() and Phase2()
tasks may be scheduled multiple times inside the loop, the corresponding nodes in the graph are
marked as “multiple” as indicated by the asterisk and the gray boxes.

Given this extracted schedule, the analysis can conclude that the two phases, the barrier,
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nextRound:Sor.Round()

barrier:Sor.Barrier()

phase1:Worker.Phase1()

phase2:Worker.Phase2()

later:<param 1>

now

*

*

Figure 3.4: Schedule statically extracted from task Round() from Figure 3.3. Double-headed
arrows indicate implicit creation edges, gray boxes indicate schedule sites inside loops.

the next iteration, and the later parameter are all ordered and therefore will never execute in
parallel. The analysis can further deduce that there may be more than one Phase1() tasks that
are not ordered with one another and that similarly, Phase2() may be scheduled multiple times
without any internal ordering.

3.4 Exception handling and inter-task exception propagation

Java provides exceptions as a built-in mechanism for handling error conditions in a program. If
an exception is thrown, the Java virtual machine (JVM) unwinds the stack of current method
calls until an exception handler is found that is prepared to catch and handle the exception. If
no exception handler is found on the current call stack, the JVM terminates the current program
execution.

A exception mechanism that unwinds the call stack works well for sequential programs be-
cause the call stack correlates to the current state of program execution. Translating exceptions
into a parallel context is not as straight forward, however, because each task has its own call
stack and the behavioral dependencies between tasks are generally unknown. If during a par-
allel computation one task fails with an exception, it can be difficult to decide which task(s)
should be responsible to catch and handle the exception and whether or not the siblings of the
failing task should continue with their computation or not.

Handling exceptions and recovering from errors in a parallel context is highly dependent on
the program and implemented algorithm. For this reason, the task model described in this chap-
ter only defines a task local exception mechanism and leaves inter-task exception propagation
over to the programmer.

As with sequential programs, exceptions are thrown using a throw statement and they can be
caught using a try/catch statement. When a thrown exception is handled, the call stack of the
current task is unwound until an exception handler is found. For uncaught exceptions the pro-
gram execution—including all currently running and scheduled tasks—is forcefully terminated
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by the JVM.
With only local exception handling, the task model does not provide any built-in mecha-

nism to propagate exception information from one task to another. Instead, this behavior must
be manually implemented by the programmer. As an example, consider the following imple-
mentation of a fork/join pattern:

1 class ForkJoin {
2 volatile Exception exception = null;
3 task T() {
4 Task f1 = schedule Fork();
5 Task f2 = schedule Fork();
6 Task join = schedule Join();
7 f1→join;
8 f2→join;
9 }

10 task Fork() {
11 int i = 0;
12 try {
13 while(i++ < 100 && exception == null)
14 doStep(i);
15 } catch(Exception ex) {
16 exception = ex;
17 }
18 }
19 task Join() {
20 if(exception != null) {
21 //there was an error during computation
22 } else {
23 //no error
24 }
25 }
26 }

If in the fork-phase any call to doStep(i) on line 14 throws an exception, the exception
is saved in the shared field exception on line 16. The test of the exception field on line 13
will cause all other Fork() tasks to interrupt their computation with the next iteration. The
exception field is also used to propagate the exception information to the Join task, which
uses it on line 20 to decide whether or not the fork-phase has successfully finished.

While being simple, this example illustrates the many different ways parallel exception
handling can be implemented. This relatively large design space makes it difficult to come up
with a single built-in mechanism and lead us to the decision to make the programmer responsible
for inter-task exception propagation, if needed.

For instance, the above example only propagates a single exception to the Join() task.
However, it can happen that the calls to doStep(i) on line 14 throw an exception in both tasks
f1 and f2 in which case one exception is quietly discarded. Depending on the program, this
behavior can be acceptable or not. Secondly, the Fork() tasks in the above program only check
at the beginning of each iteration whether an exception has been thrown by the sibling. If calls to
doStep(i) generally return quickly, the fork-phase is aborted relatively soon after the exception
has been thrown. However, if doStep(i) blocks for a significant amount of time, the exception
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cannot abort the fork-phase in a timely manner.
As we will show in Chapter 4.2.1, providing only task-local exception handling and termi-

nating program execution in the case of uncaught exceptions also simplifies the static analysis.

3.5 Explicit task ordering vs. lock-based synchronization

In systems that use processes or threads as their parallel computation primitives, the task execu-
tion order is the order in which threads or processes spawn other threads or processes. In those
systems, the only mechanism a programmer can use to express finer-grained ordering intentions
are synchronization primitives like joining, locks, or barriers.

Enforcing the programmers’ intended execution order through synchronization primitives,
however, can lead to unnatural code and has been shown to be prone to errors. A recent study by
Lu et al. [73] found that around one third of the non-deadlock concurrency bugs were caused by
violations of the order in which tasks must execute. As a result they advocate “language features
to support ‘order’ semantics to further ease concurrent programming”. A parallel programming
language or library with explicit constructs for specifying task-ordering constraints can help
programmers with reasoning about the program behavior. Explicit ordering constraints also
help with avoiding order violations introduced through inappropriate use of synchronization
primitives.

The apparent benefits of specifying task ordering constraints explicitly in the program code
instead of using low-level synchronization primitives raise the question whether or not syn-
chronization primitives such as locks are needed at all. In [13], the authors prove that it is
impossible to build concurrent implementations of many algorithms and data-structures such
as sets, queues, and mutual exclusion without low-level synchronization. Specifically, they
prove that parallel programs cannot avoid the use of either read-after-write (RAW) or atomic
write-after-read (AWAR) operations.

A RAW is defined as a write to shared variable A that is followed by a read to a different
shared variable B without a write to B in between. Implementing RAW requires memory or-
dering instructions such as memory barriers and fences. An AWAR is an atomic operation that
atomically reads and then writes to shared locations, which requires atomic primitives such as
compare-and-swap.

Therefore, unfortunately low-level synchronization cannot be avoided in all algorithms. On
the flip side, algorithm designers can improve the effectiveness of the optimizing compiler by
preferring explicit task-ordering over low-level synchronization wherever possible. Rewriting
the sor example from Section 3.3.1 into the version with explicit scheduling constraints from
Section 3.3.2, for example, enables the compiler to gather more useful scheduling information
that improves the precision of the analysis and therefore the quality of the optimizations.

3.6 Programming model or intermediate representation?

The task model is designed to be as minimal as possible while being expressive enough to
model many of the features provided by current parallel libraries and languages in a straight-
forward way. The programming model introduced here is therefore not necessarily meant to be



30 CHAPTER 3. A GENERIC TASK MODEL WITH ORDERING INFORMATION

used directly by the programmer but instead functions as an intermediate language used for the
compiler analyses.

Our experience with the case studies have shown, however, that it is possible and reason-
able to use the task model in real-world programs even though a language with some syntactic
support could help with simplifying the actual code.

3.7 Structural properties of schedules

At runtime, the task schedule is implicitly created through the execution of schedule-statements
and →-statements. The scheduler keeps track of scheduled tasks and their happens-before rela-
tions and makes sure that at any given time only tasks that are eligible for execution are actually
running.

The goal of the schedule analysis described in Chapter 4 is to compute a conservative ab-
straction of all concrete runtime schedules that the execution of a given program may produce.
As a first step towards computing abstract schedules this section provides a deeper understand-
ing of basic structural properties that all valid runtime schedules have in common.

Generally, it cannot be (statically) guaranteed that a program will not violate some struc-
tural properties when executed. It is, for example, possible for a program to create circular→-relations between tasks, which violates the wellformed-ness property described below and
results in a deadlock. While a deadlock is a realistic outcome of a program, it is also a faulty
behavior. Therefore, the compiler can assume that all correct executions result in a well-formed
schedule.

3.7.1 Well-formed schedules

A well-formed schedule guarantees that the scheduler can always choose at least one task for
execution (progress) and that every task is eventually executed (liveness). The progress and
liveness conditions require that the schedule is a directed acyclic graph. A cycle in the schedule
would result in a deadlock where two tasks block each other and prevent progress. Assuming
that the execution of a task always terminates, an acyclic graph ensures that there is always at
least one node that has only incoming edges from already executed tasks.

Besides being acyclic, a well-formed schedule also restricts the addition of new happens-
before relations. Because tasks can be stored in fields, a task object may reference a task that
has already been executed. Imagine that a program tries to order two tasks a and b by executing
a→b. If task b has already finished, the scheduler has no chance of satisfying this edge. At
the time when the edge a→b is added to the schedule, task b already lies in the past and the
scheduler cannot retroactively execute anything before that.

To prevent such unresolvable scheduling conflicts, the scheduler allows an edge a→b to be
added from within a task now only if there exists a direct or transitive edge now→b from now
to the right hand side b. This edge ensures that task b is scheduled in the future of now and
therefore is still unexecuted at the time of the edge creation. It is not necessary to require an
edge now→a, however, because it is not a problem for the scheduler to obey the →-semantics if
the source task of a happens-before edge has already been executed.
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3.7.2 Creation trees

As described in Section 3.1, the scheduler implicitly adds an edge between the current task
now and all the tasks it schedules. Those initial edges are called creation edges. In diagrams,
we depict creation edges with double arrow heads. Because a task has exactly one creator, the
creation edges form a spanning tree that is embedded into the schedule.

The creation tree is a fundamental structure inside a task schedule that exhibits two useful
properties:

1. If one task A is the direct or indirect parent of another task B in the creation tree, it is
guaranteed that A always executes before B because A creates B.

2. If A B is a creation edge, the existence of the child task B implies the existence of its
parent A, written B⇒A. This relationship is transitive, thus implying the existence of all
parents up to the root of the creation tree (the initial task that started the program). The
inverse, however, is not true; due to conditional tasks, one cannot deduce the existence of
a child task simply from the existence of the parent.

3.7.3 Exclusive tasks

Conditional control flow can result in a conditional scheduling of tasks as shown in the following
example:

1 Task a = schedule this.A();
2

3 Task b = null;
4 if(random()) {
5 b = schedule this.B1();
6 } else {
7 b = schedule this.B2();
8 Task c = schedule this.C();
9 b→c;

10 }
11

12 a→b;
The runtime schedule of this program depends on the outcome of the call to random() on

line 4. At compile-time, the analysis generally cannot determine which branch will be executed
at runtime and therefore, all possible executions must be taken into account.

If the true branch is taken, task B2() is scheduled on line 5 and bound to variable b. The→-statement on line 12 then orders tasks A() and B1() resulting in the schedule A()→B1().
If the false branch is taken on line 4, then variable b will be bound to the newly scheduled

task B2() on line 7. In addition, task C() will be scheduled on line 8 and ordered after B2() on
line 9. With the →-statement from line 12 this results in the runtime schedule A()→B2()→C().

Two tasks that are created in different branches of a conditional statement cannot co-exist
in the same run of the program but they are exclusive of each other. In the above example, B1()
is exclusive of both B2() and C().
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Figure 3.5: Marking tasks in the creation tree to test if A→ B is genuine. The fence is circled
by the dotted line, marks are shown as stars. Arcs denote exclusive tasks.

Because a static analysis must approximate runtime behavior, it may not always be possible
to compute accurate information about whether two tasks are exclusive of each other. This can
be especially difficult in the presence of loops and recursion. In some cases, however, because
exclusive tasks cannot conflict with each other, they can simply be treated as if they were non-
exclusive but ordered.

3.7.4 Genuine edges

The task model presented in this chapter does not explicitly restrict how happens-before re-
lations are created. Therefore, it is possible to execute a statement a→b conditionally, even
though the tasks bound to variables a and b may be have been scheduled unconditionally. Such
a program is not necessarily erroneous, but it can lead to problems when in some executions
two tasks are ordered when in other executions the same tasks are unordered.

We call edges that exists “in all relevant executions” genuine edges. A genuine edgeA→B is
an edge where the existence of the source taskA implies that the edge exists, denotedA⇒A→B.
This means that in all executions in which task A is scheduled, the edge has been created, too.
Edges that are not genuine should be ignored by a static analysis, thus over-approximating the
parallelism.

Given a (runtime) schedule, an algorithm to determine whether A⇒A→B first finds all the
tasks creators(A→B) that unconditionally create the edge A→B.

The problemA⇒A→B can now be rephrased as a check whether the existence ofA implies
the existence of at least one task C that creates the edge: ∃C.A⇒ C ∧C ∈ creators(A→B). This
predicate can be approximated using the creation tree and its property that the existence of a
child task implies the existence of its parent.

Figure 3.5 shows an example of a creation tree. We want to compute whether the edge
X →Y is genuine. The algorithm starts by marking the fence. The fence is comprised of all the
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tasks from the edge source X up to the root of the creation tree. The existence of the fence tasks
is implied by the existence of X because they are the parents in the creation tree.

The goal is now to check whether any task in the fence implies the existence of any task that
creates the edge X → Y . We do so by iteratively marking tasks, walking up the creation tree,
until we either mark a task in the fence, in which case the edge is genuine, or no more tasks can
be marked, in which case the edge is not genuine.

The label on edge X →Y indicates that the edge was created by both tasks A and B. There-
fore, the algorithm initially marks the tasks A and B and continues with task 6 as the parent
of A and B. Because by marking A and B all exclusive children of task 6 were marked, and
thus all possible execution paths are covered, task 6 can be marked as well. The mark on 6 is
sufficient to further mark task 5 because task 6 was created unconditionally.

In the example, task 4 cannot be marked because there is an exclusive sibling of task 5 that
is unmarked. Therefore, there is a program execution that will create task X but not tasks A or
B and thus not the edge A→ B. This concludes that A→ B is not genuine.

If the program was modified to create task 5 unconditionally, the algorithm would eventually
mark the fence in task 1, showing that A→ B were genuine.

3.8 Related work

This section provides additional background material on related programming and execution
models for parallel programs.

Structured parallelism and task-based runtimes. Models following a structured fork/join
style are well understood and researched because their syntactic scoping greatly simplifies
static analysis. The reduced flexibility of syntactically scoped parallelism, however, resulted
in the development of various task-based runtime systems that are more suitable for real-world
applications—but they are also harder to analyze. Structured parallelism as well as task-based
runtimes have been discussed in detail in Section 2.3.

Intermediate representations for explicitly parallel programs. Srinivasan et al. [107] were
among the first to develop a static single assignment form for explicitly parallel programs. They
use a parallel Fortran extension that introduces a construct to syntactically declare parallel sec-
tions in a program. Lee et al. [65] propose a Concurrent SSA framework (CSSA) for explicitly
parallel programs with cobegin/coend parallel sections. They introduce a π-assignment that
summarizes the information of interleaving statements among threads. Similar to Φ-functions,
the π-function distinguishes values of variables coming from different incoming control flow
edges. Unlike a Φ-function, however, the π-function additionally takes incoming conflict edges
into account to model possible thread interleavings. Lee et al. also introduce a concurrent
control-flow graph, which contains information about conflicting statements in addition to con-
trol flow and synchronization information. Novillo et al. [91] extend the CSSA form with
information about locks and mutual exclusion. The knowledge about locks increases the pre-
cision when computing conflicting statements by ignoring some reaching definitions that use
the same lock. All of the above intermediate representations for explicitly parallel programs as-
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sume a very restricted fork/join style of parallelism that prevents many common patterns such
as parallel regions inside loops or recursive creation of parallel threads.

Intermediate representations for parallelizing compilers. The Hierarchical Task Graph
(HTG) presented in [95, 44] is an intermediate representation for parallel programs that en-
capsulates data and control dependence ordering as well as thread management and scheduling
policies.

The construction of the HTC starts from the program’s control-flow graph (CFG). It then
computes a hierarchical graph where a loop and all statements immediately nested inside that
loop are summarized into a single node on the next higher hierarchy level. The HTG is com-
posed of three types of nodes:

Simple node: a node representing a task with no subtasks;

Compound node: a node representing a task that consists of other tasks;

Loop node: a node representing a task that is a loop whose iteration body is an HTG.

Similarly to Hierarchical Task Graphs, Kimble [15] is an intermediate representation where
program constructs are organized in a hierarchy of directed graphs. The structure of a Kimble
IR is described as a hierarchy of directed acyclic graphs (DAGs). A single DAG represents
control and data dependence between program constructs in a single task. The individual task
DAGs are put into a hierarchy through nesting relationships. Nesting relationships can form
cycles in order to express recursive flows.

Kimble and Hierarchical Task Graphs are tools for parallelizing compilers that perform
automatic extraction of parallelism from serial programs. Parallelism is introduced to a program
by the compiler and not by the programmer as in our task model. It is also unclear how the
construction of an IR that takes a single CFG as its input scales to real-world object-oriented
programs.

The general structure and abstraction level of both IRs matches well with our task model and
the schedule analysis presented in the next chapter. For example, the call-graph of a program
that uses our task model can be transformed into a forest of call-graphs where task-methods
are the roots for each (task-internal) call-graph1. By connecting the individual call-graphs with
edges from each schedule-statement to the corresponding task call-graph and by exploding the
call-graphs by inlining the corresponding control-flow graphs of each method, a structure very
similar to the Kimble IR emerges. Because of the structural similarities between all of those
approaches we think that many techniques and algorithms originally developed for HTG and
Kimble may prove useful for future work on our task model.

Process calculi and the actor model. A process calculus defines an algebra for describing
and analyzing the interaction, communication, and synchronization between concurrent pro-
cesses. As algebras, process calculi permit formal reasoning about many of their non-trivial
properties, such as behavioral equivalence through bisimulation [43].

1This transformation clones call-graph nodes such that the individual call-graphs are disjoint.
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The join-calculus [42], π-calculus [84], and Communicating Sequential Processes
(CSP) [50] are examples of process calculi for concurrent systems. CSP, for example, in-
fluenced the design of multiple programming languages such as occam [70], JCSP [92], and
Go [63]. In a process calculus, a system is described as independent processes that interact
through messages sent over named channels.

The actor model [5, 55] is closely related to process calculi. Actors in the actor model are
long-lasting processes that possess an identity. Actors communicate by sending messages to
each other. Each actor is driven by an internal messaging loop which repeatedly checks the
actor’s mailbox and handles new messages.

ERBIUM [85] is an intermediate representation based on a streaming execution model de-
rived from Kahn Process Networks [54]. Like in the actor model, ERBIUM uses persistent
processes that communicate and synchronize through multi-producer multi-consumer streams
(buffers). As an intermediate representation, ERBIUM is explicitly parallel and supports dy-
namic creation and termination of concurrent processes.

The actor model and ERBIUM both favor persistent, longer-running processes communicat-
ing through point-to-point data streams. In comparison, our task model favors small short-lived
tasks with explicit ordering that communicate through shared memory.

The task graph pattern. In [83], the authors describe a programming and design pattern for
parallel programs, called the task graph pattern. The task graph pattern suggests to break down
a complex problem into a set of atomic tasks with dependencies between them. Each task is
a separate unit of work that may take dependencies on one or more antecedents. A task may
only start when all the dependencies to its antecedents are satisfied. Task graphs are defined
statically at design time or—in a variation of the pattern—defined programmatically prior to
the execution of the graph. The task graph pattern with its restricted task-graph creation and
ordering constraints describes a subset of our task model. It provides a collection of guidelines
for how a complex problem can be broken down into a set of ordered tasks.

3.9 Summary

Optimizations for parallel programs are more effective the more detailed knowledge the com-
piler has about the ordering in which tasks can be executed. For a fully automatic compiler that
does not rely on manual programmer intervention, this knowledge must come from analyzing
the program code.

Java’s unstructured threads, however, make it hard if not impossible to gather meaningful
ordering information. The only mechanism a programmer can use to express ordering intentions
are synchronization primitives like locks or barriers. Locks and barriers are represented as
object instances and possible aliasing makes it hard for the compiler to recognize even relatively
simple patterns such as fork/join. Besides the difficulties for the compiler analyses, unstructured
threads with synchronization primitives have also been shown to be prone to error and difficult
to use.

For this reason, many current parallel programming libraries and languages deliberately
restrict the unbound flexibility of unstructured tasks to different degrees. Those restrictions
often contain additional task-ordering information that remains unused in current compilers.
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The task model presented in this chapter is based on lightweight tasks with explicit happens-
before relations and is general enough to capture the ordering information contained in many
parallel programming models. By making the ordering constraints explicit in the program code,
compilers can extract useful scheduling information more easily. This chapter also identifies
different structural properties of runtime task schedules that all valid program executions have
in common.



4
Schedule analysis in optimizing compilers

Compiler optimizations are program transformations that try to minimize some program at-
tribute (e.g., runtime or memory footprint) or maximize a program attribute (e.g., register usage
or memory throughput) in a favorable way. Compiler optimizations must be safe and conser-
vative: the compiler must guarantee that an optimization does not turn a correct program into
an incorrect one. In general, this means that an optimization must not change a program’s out-
come. More specifically, being safe and conservative implies that the program should not be
able to observe directly whether or not the optimization has been applied. [87, pp. 319–328]

Many classical optimizations that fulfill this “unobservability” property in single-threaded
programs become observable in a parallel setting, however. As an example, consider a load
elimination optimization that replaces an access to main memory with a read of a compiler-
generated temporary that can be allocated in faster storage such as registers or local memory.
The compiler can rewrite, for example, two consecutive field loads such as:

this.a = this.f;
this.b = this.f;

Into code that loads the field only once:

int tmp = this.f;
this.a = tmp;
this.b = tmp;

In a single-threaded program, this transformation cannot be observed by the program. In a
parallel program, however, a concurrent task may be able to observe whether the transformation
has been applied or not. Imagine a task, that constantly updates the field this.f and then com-
pares this.a and this.b. In the first version with two loads, there exists an interleaving where
the update to this.f happens in between the two loads and the observer task sees different
values for this.a and this.b. In the second example, however, the observer will always see
that this.a == this.b because the value of this.f is actually only loaded once.

This scenario requires a very (un-)lucky interleaving of the tasks such that the observer is
able to distinguish between the two program versions. However, even if it may happen rarely
on a real system, the infrequence of such an event makes it just harder to detect, reproduce, and
debug.

37
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Figure 4.1: The three cases where two program points P and Q commute.

The core question a compiler has to answer when optimizing parallel programs is, if the
transformation may be observable by any parallel task. For answering this question, the com-
piler must prove for a given program point P (such as a single bytecode) that there is no other
program point Q that may interfere with P. This reduces the question of whether or not an
optimization can be safely applied at program point P to the question of whether two program
points P and Q commute:

canTrans f orm(P) ⇐⇒ ∀Q ∈ Prog ∶ commute(P,Q).
Two program points P and Q commute for any of the three cases depicted in Figure 4.1: P

and Q commute if they are always executed by the same task, as shown in Panel (a), if they
always access different memory, as shown in Panel (b), or if the tasks that execute P and Q are
always ordered by happens-before relations, shown in Panel (c).

In practice, however, it is difficult to decide whether or not the above conditions always
hold. Therefore, it is easier to rephrase the predicate commute(P,Q) into the question whether
two program points may interfere:

¬mayInter f ere(P,Q) �⇒ commute(P,Q).
The program points P and Q may interfere if they may access the same memory and

if they may ever be executed by unordered tasks. In general, the set ¬mayInter f ere(P,Q)
is smaller than the set commute(P,Q) due to imprecisions in the compiler analyses. For
safe and conservative analyses, however, ¬mayInter f ere(P,Q) is a subset of commute(P,Q):¬mayInter f ere(P,Q) ⊆ commute(P,Q), meaning that if P and Q are classified to not interfere,
they are guaranteed to commute.

The more precisely mayInter f ere() can be computed, the more effective optimizations for
parallel programs become. Figure 4.2 shows a rule GENERIC-OPT for a generic program op-
timization. GENERIC-OPT computes all pairs of program points P and Q with potential read-
/write or write/write interference.

The result of the GENERIC-OPT rule is the relation mayInter f ere(P,Q) between pairs of
program points P and Q. For program points P and Q that are reachable by tasks A and B
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GENERIC-OPT(1a)P WRITES v1 in A(1b)Q MAY ACCESS v2 in B(2a)v1 MAY POINT TO Obj(2b)v2 MAY POINT TO Obj(3)Obj MAY ESCAPE A and B(4)parallel(A, B)
mayInterfere(P, Q)

Figure 4.2: A generic optimization.

respectively, clauses (1a) and (1b) select the variables v1 and v2 that P and Q access (where P
is the write operation and Q is either a read or a write).

Clauses (2a) and (2b) consult a points-to set, computed by a points-to analysis, to check
whether v1 and v2 may point to the same (analysis-time) object Ob j. If v1 and v2 do not point
to the same analysis-time object it is guaranteed that at runtime P and Q never access the same
memory.

Clause (3) tests whether Ob j may escape tasks A and B as computed by an escape analy-
sis. The escape information helps with disambiguating cases where—due to imprecision—the
points-to analysis unnecessarily conflates distinct runtime objects into the same analysis-time
object, introducing spurious aliasing. If the escape analysis can show that object Ob j is local
to task A (that is, only task A can ever obtain a reference to Ob j) then the single analysis-time
object Ob j represents multiple disjoint runtime objects each local to tasks A or B.

If any of the clauses (2a), (2b), or (3) is false, the program points P and Q are guaranteed
to access disjoint memory and therefore commute as shown in Figure 4.1(b). If they are true,
however, the we must assume that P and Q may access the same memory. In this case, P and Q
can only be shown to commute if an analysis can prove that their memory accesses are ordered
either by program order inside a single task or by happens-before relationships between tasks.

This chapter presents schedule analysis as one algorithm for computing task-order informa-
tion from a program with tasks and explicit scheduling constraints. The result of the schedule
analysis is the relation parallel(A,B) used in clause (4). If A and B are not classified as (po-
tentially) parallel by the schedule analysis then A and B are either the same task or they are
always ordered by happens-before relationships, covering panels (a) and (c) of Figure 4.1.

4.1 Terminology and notation

Points-to analysis and call graph construction: Starting from a bytecode representation of
the program, a points-to analysis computes points-to sets for each program variable. The result
of the points-to analysis is a relation v1 MAY POINT TO Ob j relating program variables v1 to
analysis-time objects Ob j. Analysis-time objects are approximations of runtime objects. In
the simplest case, an analysis-time object Ob j directly correlates to the statement S of a single
object creation site (such as a distinct new statement) inside a method m(). In a more complex
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context-sensitive points-to analysis, the creation site is augmented with additional (finite) data
that allows the analysis to disambiguate different contexts in which S may be executed. For ex-
ample, in a n-call-site-sensitive analysis a string of at most n caller methods [n1(), . . . ,nn(),m()]
is used to augment S. A method-invocation path p = [n1(), . . . ,nn(),m()] ending in m() contain-
ing S helps with distinguishing all executions of S via p from other executions of S that reach
m() through a different path. In all cases, an analysis-time object Ob j represents an equivalence
class of a (potentially infinite) number of runtime objects which the analysis cannot track in
more detail.

The points-to analysis also performs on-the-fly call graph construction. Call graph con-
struction uses the points-to information as well as type information to find the possible target
methods for a call site. At the same time, the points-to analysis must know about possible
target methods at a call site to correctly compute points-to information. While performing
the points-to analysis, virtual call sites of the form v1.m() are resolved by looking at possible
concrete object types T of objects referenced by v1 and the concrete method implementations
m$1(), m$2(), ... for m() defined by each T . The resolved virtual call site is then stored in
the call graph. Each node in the call graph represents one concrete method implementation,
possibly augmented with an additional context string for higher precision. A directed edge
[c1, m$1()]⇀[c2, m$2()] is added between two nodes [c1, m$1()] and [c2, m$2()] if
method m$1() executed in context c1 may call method m$2() with context c21.

The schedule analysis itself has exactly one dependence on a points-to analysis: to resolve
task method implementations at virtual call sites. If a points-to analysis is not available or
considered too expensive, a quicker type-based approximation of the call-graph can be used to
compute the set of target tasks at each schedule site. Since none of the benchmarks evaluated
in this dissertation requires virtual dispatch for task methods, the results of the schedule anal-
ysis would be the same if we used a type-based call graph instead of the points-to analysis.
(However, the optimizations would still require points-to information.)

During the points-to analysis, schedule-statements are treated as normal method calls. In a
flow sensitive points-to analysis, this treatment may lead to wrong results because a method call
happens immediately while a scheduled task only executes later. Treating schedule-statements
as simple method calls therefore is only valid for a flow insensitive points-to analysis. A flow
insensitive analysis ignores the flow of control in the program and the program becomes a
set of statements which can execute multiple times, in any possible order [53, 102]. While
being less precise than their flow sensitive counterparts, flow insensitive points-to analyses are
significantly more performant. Also, by transforming the program into SSA form (see Section
4.2.1), a limited form of control flow sensitivity is re-gained.

1For the n-call-site-sensitive analysis example and context c1 = [n1(), . . . ,nn(),m$1()], context c2 results from
c1 by shifting the string to the left and appending m$2(): c2 = [n2(), . . . ,nn(),m$1(),m$2()]. This operation
maintains the maximum context string length n.
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Escape analysis: A task escape analysis [94, 30] is commonly based on a points-to analysis
and uses the points-to sets to decide whether a task A may leak references to objects created
by A. For each task object A, the escape analysis starts with finding all nodes in the call graph
that represent possible task entry methods of A. From there, the analysis follows the edges in
the call graph to find all methods m() that may be invoked during the execution of A. For each
object Ob j created in method m() reachable by A, the escape analysis decides whether Ob j
may escape A.

An object Ob j is said to escape A if it is passed as a parameter to any of A’s entry methods,
if it may be stored in a static field, if it may be passed as a parameter to another task, or
(recursively) if it is reachable by any object that escapes A.

The schedule analysis itself does not make use of escape information. However, an escape
analysis can improve optimizations by increasing the precision of the interference analysis.

Task methods, objects, and variables: Task methods are methods that function as the entry
points of tasks. Task methods are written in a method-notation A(), B(), and T().

At runtime, task objects are normal objects that can be passed to and be returned from meth-
ods as well as stored in fields. As a result, a program is allowed to add happens-before relations
to and from tasks that have been loaded from fields. The only restriction in the task model is the
wellformed-ness requirement described in Section 3.7.1. To avoid complex must-alias analysis,
however, our analysis focusses on analyzing the common case of happens-before edges that are
created between local task variables. Happens-before edges involving task objects that were
loaded from fields are ignored by the analysis, thus over-approximating the parallelism in the
program. Over-approximating parallelism is generally the safe and conservative assumption.2

At analysis-time, runtime task objects are approximated by analysis-time objects tracked
by the points-to analysis. We write analysis-time task objects in a calligraphic font A, B, and
T . In this chapter, the term ‘task object’ always refers to an analysis-time task object and
not a runtime task object, unless explicitly stated otherwise. At runtime, a task object refers
to exactly one task method as its entry point. Due to imprecisions in the points-to analysis,
however, an analysis-time task object may refer to multiple task methods as possible entry
points. Nevertheless, in the examples in this chapter we sometimes use task methods as well as
task variables as representatives of the corresponding analysis-time task object if the meaning
is clear from the context.

Task variables are program variables that point to task objects and are written as lower-case
letters in a sans-serif font a, b, and t. We consider a task variable to be local to a task method
T() if it is either defined at a schedule site inside T() or if is a formal parameter of T(). Non-
local task variables, especially task objects read from fields, cannot be accurately identified by
the analysis and must generally be ignored as described above.

Because the analysis works on a static single assignment (SSA) representation of the input
program, a task method T() contains at most one assignment to a task variable. Therefore, a
local task variable that is not a parameter is equivalent to the schedule site (i.e., the schedule
-statement) where it is defined. Depending on the context, we thus use the term schedule site
interchangeably with the corresponding schedule-statement and the defined task variable; in

2None of the benchmarks evaluated in the case studies in chapters 5 and 6 required task objects to be stored in
fields and could therefore be analyzed without restrictions.
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if(count < this.NumRounds)

Task nextRound = 
      schedule this.Round(count++, later);

nextRound→later;

Task barrier = schedule this.Barrier();

iΦ = Φ(i0, i1);
if(iΦ < workers.length)

Task phase1 = 
     schedule workers[iΦ].Phase1();
Task phase2 = 
     schedule workers[iΦ].Phase2();

phase1→barrier; 
barrier→phase2; 
phase2→nextRound;

int i0 = 0;

int i1 = iΦ + 1;

return;

Uncaught
Exceptions

Params: int count, Task later

BB1:

BB2:

BB3:

BB4:

BB5:

BB6:

BB7:

true false

true false

l

Figure 4.3: Control-flow graph for the Round() task method of the Sor class from Figure 3.3

all cases we mean local task variable, unless explicitly stated otherwise.

4.1.1 Running example: The sor benchmark

Throughout this chapter, we use the sor benchmark from Figure 3.3 as the running example to
explain the individual steps of the schedule analysis. Figure 4.3 shows the control-flow graph
(CFG) of the sor program after it has been transformed into SSA form.3 The next Section 4.2.1
discusses SSA form in some more detail.

The subscripts on variable i denote the different versions of i that the SSA transformation
introduces to accommodate for the multiple assignments to i: i is assigned 0 before the loop in

3We use “harpoon” arrows⇀ for control-flow edges to distinguish them from happens-before edges→.
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basic block BB3 and incremented by 1 after each loop iteration in basic block BB6.
Basic block BB4 is the head of the for-loop, represented by the path BB4⇀ BB5⇀ BB6⇀

BB4. Two control flows join at BB4, one coming from BB3 and the other coming from BB6 via
the back-edge �. The Φ function Φ(i0,i1) assigns to iΦ the version of i depending on where
the control-flow came from.

4.2 The schedule analysis algorithm

The goal of the schedule analysis is to determine whether at runtime two tasks may be executed
in parallel or whether they are always ordered by happens-before relations. Schedule analysis
thus computes the relation parallel(A,B) for pairs of tasks A and B.

The key insight behind the schedule analysis algorithm presented in this chapter is to not
compute what tasks are ordered with each other but the opposite: what tasks may be unordered.
Consider as an example the following task methods T1() and T2():
task T1() {
Task a = schedule A;
Task b = schedule B;
a→b;

}

task T2() {
Task a = schedule A;
Task b = schedule B;

}

When looking for ordered-ness, discovering the statement a→b in task method T1() may
make the compiler record the fact that tasks A and B are ordered. With the given precision,
the analysis further assumes that task method T2() also schedules (the same) tasks A and B.
However, because task method T2() leaves A and B unordered, the compiler now would have
to remove the fact ordered(A,B) from the set of known facts.

The property of “ordered-ness” is non-monotonic in the sense that finding more information
may add facts as well as remove facts from the set of ordered tasks. Taking “unordered-ness” as
a property, however, we can re-gain the monotonicity. If we deduce in task method T2() that the
tasks A and B may be scheduled to be parallel, no schedule-statement and no happens-before
relation that we discover later will invalidate this fact.

The result of the schedule analysis is computed in the five steps shown in Figure 4.4. After
bringing the input program into a normalized form in the first step, the schedule analysis extracts
for each task method a graph that represents →-relations between task variables (including task
parameters). For maximizing the precision of the analysis, the graph extraction algorithm clones
a schedule site for each loop context it may be executed in.

In the third step, the analysis computes for each pair of task variables of a task method a
relation a REL b that summarizes the effects of all the corresponding clones of schedule sites in
different loop contexts. This step also deals with conditional control flow where multiple task
variables may reach the left and/or right-hand side of a single →-statement.

The fourth step computes for each task variable of the task method the set of (analysis-time)
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Program

Normalize input 
program

Extract schedule-
site ordering

Compute task-
variable relations

Find unordered 
task-variable / 

task-object pairs

Find unordered 
task-object/task-

object pairs

inlined task-methods + 
SSA form

Contextualized task-
variable ordering graph

a REL b tuples

unordered(a, B) 
relation

parallel(A, B) relation

Figure 4.4: Steps of the schedule analysis and the intermediate products.

task objects that are unordered with that site. This step is an inter-task analysis that works not
only on the code of the task method T() but also takes results computed about possible subtasks
S of T() into account. The important now happens-before later pattern introduced in Section
3.2, where a task variable is passed as a parameter to a subtask, is also handled in this step.

The fifth and final step is to compute the result parallel(A,B) of the schedule analy-
sis by combining the information about unordered task-variable/task-object pairs in relation
unordered(a,B) with the tasks and subtasks that may be represented by each task variable a.

The following sections describe each of the steps in more detail.

4.2.1 Step 1: Normalizing the input program

Before the schedule analysis extracts the scheduling information from the program code, the
program is first transformed into a normalized version. In particular, the program is trans-
lated into a static single-assignment form (SSA) and non-task methods that contain schedule
-statements or →-statements are inlined into all task methods that may execute them. After
inlining, the schedule analysis can ignore non-task methods and concentrate on analyzing only
the task methods.

As described in Section 3.4, uncaught exceptions in a task terminate the program execution.
This allows the normalization step to prune the task-method control-flow graphs and remove all
exceptional edges from inner nodes to the exit node.

The remainder of this section explains all three normalization steps in more detail.
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int x = ...;
int y = ...;

while(x < 100) {
x = x + 1;
y = y + 1;

}

(a) Original program.

int x0 = ...;
int y0 = ...;

xΦ = Φ(x0, x1);
yΦ = Φ(y0, y1);

if(xΦ < 100)

x1 = xΦ + 1;
y1 = yΦ + 1;

x2 = xΦ;
y2 = yΦ;

return;

BB1:

BB3: BB4:

true false

BB2:

m

l 

(b) Same program in SSA form.

Figure 4.5: A small example in SSA form.

SSA-form: The schedule analysis assumes that the whole program code has been transformed
into a static single-assignment form (SSA). A method is in SSA form if every variable that is
assigned a value occurs as the target of only one assignment. If in the original method the
variable is assigned multiple values, the corresponding method in SSA form contains multiple
distinct copies (“versions”) of the variable where each copy is assigned a value only once. This
discipline of copying variables encodes information about definition and uses of variables in
the name space of the variable: a use of a variable may use the value produced by a particular
definition if and only if the definition and the use have exactly the same name for the variable
in the SSA form. [87, pp. 252–258]

When transforming a program into SSA form, the compiler insertsΦ-functions at join points
of the control-flow graph where multiple control-flow paths merge. Each Φ-function has as
many argument positions as there are versions of the variable coming together at that node. Each
argument position in theΦ-function further corresponds to a particular control-flow predecessor.

Figure 4.5(a) shows a small program consisting of a while-loop that iteratively updates two
variables x and y. The corresponding control-flow graph and SSA form is depicted in Figure
4.5(b). Variable names include subscripts to create a distinct name for each definition. The
original initializations of x and y are transformed into definitions of x0 and y0 in basic block
BB1 and the updates inside the loop are transformed into definitions of variables x1 and y1 in
basic block BB3.

Basic block BB2 is the head of the loop. In BB2, two control-flows are joined: the control
flows from edge � and edge m. In basic blocks where multiple distinct versions of a single
variable must be merged, SSA inserts Φ functions. Φ functions are pseudo instructions that
represent control-flow merge points and behave in an unusual way: A Φ function defines its
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left-hand side SSA variable with the value of its argument that corresponds to the edge along
which control entered the block.

Two Φ-functions for variables x and y have been inserted into BB2. Therefore, the first
parameters of the Φ-functions defining xΦ and yΦ correspond to the variables coming from
edge � (x0 and y0 respectively) and the second parameters correspond to the variables coming
via edge m (x1 and y1 respectively).

Edge m is called a back-edge. A back-edge is defined as an edge from a node to one of its
ancestors in a depth-first spanning tree starting from the entry node.

Task-method inlining The schedule analysis as presented in this dissertation assumes that
schedule-statements and→-statements are only present in task methods. It is easy for the com-
piler to enforce this syntactically by simply disallowing schedule-statements and→-statements
to occur in normal methods. This restriction, however, forces the programmer to manually re-
engineer the program which can be cumbersome. Instead of the programmer manually chang-
ing the program, the compiler uses method inlining to ensure that all schedule-statements and→-statements are located in task methods.

The input to this normalization step is the call-graph of the program. In a call-graph, nodes
represent methods and a directed edge between two nodes m() and n() exists if method m()
may call method n().

Inlining is a mechanism that replaces all calls to a method n() inside a method m() with
copies of the body of n(). Given two method nodes m() and n() with a call edge m()⇀n(),
inlining method n() into method m() effectively increases the code size of m() (because it now
also contains the code of n()) but it also removes the edge m()⇀n() from the call-graph.

A single virtual call site, where the exact method implementation depends on the runtime
type of the receiver object, can result in multiple edges in the call-graph, one for each possible
concrete method implementation. When inlining the virtual call, the virtual dispatch mechanism
can be made explicit in the caller by choosing the correct implementation depending on the
object type. For example, consider two classes A and B where B extends A and both classes
have a concrete implementation of a method m(), called m$1() and m$2() respectively. Then, a
virtual call of the form obj.m() can be expanded into a form without virtual calls:

if(obj instanceof B) {
obj.m$2();

} else {
obj.m$1();

}

Once all virtual call-sites have been expanded, the compiler starts inlining non-task meth-
ods that contain schedule-statements and/or →-statements into their callers. The inlining pro-
cess stops when only task methods and methods unreachable in the call graph contain schedule
-statements and →-statements. The expanded control-flow graphs of the task methods (with
inlined non-task methods where necessary) are the input to the rest of the schedule analysis.

Pruning of exception edges of uncaught exceptions As described in Section 3.4, the excep-
tion handling mechanism of the task model specifies that the program execution is terminated
whenever there is an uncaught exception in any of the running tasks. This behavior is more than
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Task a = schedule x.A();

return;

Uncaught
Exceptions

Task b = schedule y.B();

z.doSomething()

a→b;

enter

exit

Figure 4.6: Control-flow graph with exception edges representing uncaught exceptions.

just a description of the runtime implementation; it is somewhat fundamental for the correct-
ness of the schedule analysis and ensures that the schedule analysis can extract any meaningful
information.

Imagine that uncaught exceptions were defined to only terminate the current task but not the
whole program. Further, imagine the following simple task:

task T() {
Task a = schedule x.A();
Task b = schedule y.B();
z.doSomething();
a→b;

}

Every single line in the above example can throw exceptions, such as an OutOfMemoryError
or a NullPointerException. If only the task T currently executing T() would be terminated on
such an uncaught exception, the schedule analysis could not legally deduce that x.A()→y.B()
because the statement a→b may never be executed in the case of an exception.4

The uncertainty that uncaught exceptions bring to the analysis comes from their correspond-
ing edges in the control-flow graph. Figure 4.6 depicts the control-flow graph for the above
example of task T(). The dashed edges represent exceptional control flow. When analyzing
the exit node, the analysis merges all the facts that were computed for the nodes at the source
of the incoming control-flow edges. Because it must do so conservatively, it can only rely on→-statements that were executed on all possible control flows. In the example, the analysis

4Another approach to terminating the whole program could be to automatically un-schedule child tasks when
the parent is terminated with an uncaught exception.
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therefore must conclude that a→b may not be executed and therefore cannot extract any mean-
ingful information.

However, knowing that uncaught exceptions will terminate the program execution, the anal-
ysis can prune all exceptional control-flow edges that lead into the exit node. Exceptional
control-flow for exceptions that are explicitly caught by the programmer, however, remain in
the control-flow graph. If the body of task method T() would be wrapped in a try/catch-
block, for example, the analysis would (correctly) conclude that tasks x.A() and y.B() may be
scheduled but not ordered.

4.2.2 Step 2: Extracting the loop-contextualized task-variable ordering
graph

The second step of analyzing a task method is to extract information about the effects of →-
statements on the ordering of local tasks variables. The difficulty is to decide for each →-
statement whether it orders the tasks conditionally or unconditionally and to compute the or-
dering effects of →-statements when tasks are scheduled inside loops. As an example, consider
this simplified version of the sor example from Figure 3.3 with only one barrier and only the
second phase phase2:

task Round() {
Task barrier = schedule this.Barrier();
Task phase2 = schedule this.phase2();
Task nextRound = schedule this.Round();
barrier→phase2;
phase2→nextRound;

}

Because all three schedule sites execute unconditionally, we can conclude that the two
happens-before edges have the transitive effect of ordering barrier and nextRound. This con-
clusion is not true, however, if any node on a transitive path may be scheduled conditionally, as
in the following example:

task Round() {
Task barrier = schedule this.Barrier();
Task nextRound = schedule this.nextRound();
while(random()) {
Task phase2 = schedule this.Phase2();
barrier→phase2;
phase2→nextRound;

}
}

Here, if random() is false already the first time, the schedule site at phase2 is never ex-
ecuted and the two happens-before edges are not created. Therefore, it is not guaranteed that
barrier and nextRound are transitively ordered in all cases, and so the analysis must consider
them to be potentially parallel. However, no matter how many Phase2() tasks are scheduled
inside the loop, the analysis should conclude that all Phase2() tasks are ordered with respect to
barrier and nextRound and that the Phase2() tasks are not ordered among themselves. If the
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while loop is replaced with a do/while loop, the loop will be executed at least once and so the
analysis may conclude that tasks barrier and nextRound are ordered transitively.

Tasks are commonly scheduled inside loops or recursive methods (which are translated into
loops by the method inlining done during normalization). Therefore, it is important for the
precision of the whole analysis to recognize scheduling patterns across loops. The goal of this
step is to extract as much scheduling and ordering information from loops as possible.

This section describes a data-flow analysis that keeps track of the loop context in which
schedule sites are executed. The result of this step is a graph where nodes are loop-context/task-
variable pairs and edges represent genuine→-edges that are created by→-statements. The data-
flow analysis is a standard fixed-point analysis on the control-flow graph (CFG) of the task
method. The analysis is defined as a transfer function Trans that, given the the entry state
Statein(n) of a control-flow block n, computes the exit state Stateout(n) for that block:

Stateout(n) = Trans(Statein(n)).
The State values are propagated between control-flow graph nodes using the meet operator�. The meet operator � combines the output states of all predecessors pred(n) of n into the

input state Statein(n) that is used by the transfer function:

Statein(n) = �
m∈pred(n)Stateout(m).

The data-flow analysis ends once the states reach a fixed point and do not change any more.
After introducing the running example, the following sections formally define the State

value, the meet operator �, and the transfer function Trans.

Running example

Table 4.1 shows how the data-flow analysis progresses for the running example of the sor
benchmark. For this simple example, the data-flow analysis only requires a single iteration.
Table 4.1 shows each of the four data-flow-value components for the interesting basic blocks.
Basic blocks that simply forward the flow-value without changes were omitted from the figure.

For the TaskVarsout(n), Table 4.1 only shows the full loop-context/task-variable pair the
first time the task variable is defined. After that, a unique integer ID is used to clarify the
presentation. The same integer IDs are also used in VarMapout(n) and HBEdgesout(n).

We re-visit the example from Table 4.1 frequently throughout this section and explain in de-
tail how each data-flow-value component is computed. Section 4.2.2 presents a second example
with a more complex task schedule where happens-before relationships are created between
tasks that are scheduled in different loop iterations.

The data-flow value State(n)
The data-flow value State(n) that flows in and out of each block n is a complex value consisting
of four parts:
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entry BB2 BB4 BB5
iteration 1
LoopCtxtsout(n) {ε} {ε} {ε},{ε,�} {ε},{ε,�}
TaskVarsout(n) 0 ∶ [{ε},now]

1 ∶ [{ε},later] 0,1,
2 ∶ [{ε},nextRound],
3 ∶ [{ε},barrier]

0,1,2,3
4 ∶ [{ε,�},now],
5 ∶ [{ε,�},later],
6 ∶ [{ε,�},nextRound],
7 ∶ [{ε,�},barrier]

0,1,2,3,4,5,6,7,
8 ∶ [{ε},phase1],
9 ∶ [{ε},phase2],
10 ∶ [{ε,�},phase1],
11 ∶ [{ε,�},phase2]

VarMapout(n) � � 4� {0},
5� {1},
6� {2},
7� {3}

4� {0},
5� {1},
6� {2},
7� {3}

HBEdgesout(n) � 2 13

0

2 13

0

2 13
8

10

9

11

0

Table 4.1: Extracting the loop-sensitive task-variable ordering graph from the sor example.

State(n) ∶=
�������������

LoopCtxts(n)
TaskVars(n)
VarMap(n)
HBEdges(n)

LoopCtxts(n) keeps track of the loop contexts in which block n may be executed. A single
loop context lc is a set of back-edges e ∈ BackEdges from the control-flow graph. The loop
context lc contains a back-edge e if the edge may have been taken one or more times in the
control flow that is represented by this loop context. A special element ε (the ‘empty’ loop) is
used in loop contexts to represent the first execution where no back-edge has been taken yet.

The LoopCtxts(n)-part of a state State(n) is a set of loop contexts (which are sets of back-
edges). The set of loop contexts LoopCtxts(n) at a given block n represents the possible paths
through the control-flow graph that, starting from the entry node, can reach block n. As an
example, consider a control-flow graph with two nested loops represented by back-edges � and℘. For a block n that is outside both loops (that is, there is no looping path from n to n that
contains either � or ℘) the only possible loop context during analysis is {ε} (assuming no other
back-edges exist). For a block m that is inside the two loops (that is, the CFG contains at
least one path from m to m that contains � and at least one path that contains ℘) the analysis
will compute LoopCtxts(m) = {{ε},{ε,�},{ε,℘},{ε,�,℘}}. Those loop contexts represent the
facts that m can be reached directly without taking any back-edge: {ε}; that m can be reached
multiple times, first directly and then by looping around only �: {ε,�}; that n can be reached
multiple times, first directly and then by looping around only ℘: {ε,℘}; and that n can be
reached multiple times, first directly and then arbitrarily looping around � and ℘: {ε,�,℘}.

TaskVars(n) contains loop-contextualized copies of the SSA task variables, that is,
SSA task variables that are additionally distinguished by a loop context. A loop-
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contextualized task variable is represented as a loop-context/SSA-task-variable pair. In
the previous example, assume that block m inside the nested loops contains a schedule
site that defines task variable t1. Given the active loop contexts at m, LoopCtxts(m) ={ε},{ε,�},{ε,℘},{ε,�,℘}, the analysis will consider the loop-contextualized task variables:
TaskVars(m) = {[{ε}, t1],[{ε,�}, t1]},[{ε,℘}, t1]},[{ε,�,℘}, t1]}. Loop-contextualization ef-
fectively creates clones of task variables (and their corresponding schedule sites) representing
all combinations of different loop iterations.

VarMap(n) is a simple mapping from an element in TaskVars(n) to a set of other elements
of TaskVars(n). VarMap(n) keeps track of aliasing between loop-contextualized task variables
resulting from Φ-functions and loop-invariant task variables.

HBEdges(n) contains happens-before edges between elements of TaskVars(n). By the
way the rules of the data-flow analysis are designed, HBEdges(n) only contains edges be-
tween elements of TaskVars(n) for which no mapping exists in VarMap(n). That is, a→ b ∈
HBEdges(n) �⇒ a ∉Keys(VarMap(n))∧b ∉Keys(VarMap(n)).
The result. The result of this analysis step is the loop-contextualized task-variable ordering
graph G. G is given by the TaskVars and HBEdges components of the input state computed
for the exit node of the CFG: G = {TaskVarsin(exit),HBEdgesin(exit)}. This graph is the only
input to the subsequent schedule analysis steps; the other data-flow values computed in this step
can be discarded.

Initial states Statein(n) and Stateout(n). For all basic blocks n of the CFG other than the
entry node, we initialize each component of Statein(n) and Stateout(n) to the empty set �.

The entry node, Stateout(entry) is defined as follows, where TaskParam is a set of those
SSA task variables that are input parameters to the current task method:

Stateout(entry) ∶=
�������������

LoopCtxtsout(entry) = {{ε}}
TaskVarsout(entry) = [{ε},now]∪{[{ε}, p] � p ∈ TaskParam}
VarMapout(entry) = �
HBEdgesout(entry) = �

The Round() task method from the sor example has one explicit task parameter later and
the implicit task parameter now. The initial state TaskVarsout(entry) in Table 4.1 therefore
contains two elements for now and later, both in the empty loop context {ε}.
The meet operator �
The meet operator � defines how the input state Statein(n) for a block n is computed. The
meet operator merges the out states of all predecessor blocks of n to compute Statein(n) =�m∈pred(n)Stateout(m). Because of the complex nature of the State flow-value, the following
paragraphs define � for each component of State individually.

Computing LoopCtxtsin(n): Computing LoopCtxtsin(n) is basically done by merging all
loop contexts of the predecessor nodes. However, if n is a loop head, we must also expand
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the incoming loop contexts with back-edges that may end in n. In addition, we can kill those
loop contexts that contain back-edges that do not loop around n.

For a block n, we define the ReachingLCs to be the set of loop contexts that can reach n:

ReachingLCs(n) ∶= �� �
m∈preds(n)LoopCtxtsout(m)��×{x⇀ n � x⇀ n ∈ BackEdges}.

The basis for this set is the set-union of all predecessor’s LoopCtxts. Each loop context
in this set is expanded by the back-edges x⇀ n that end in the current node n. The expansion
operator LCs×BEs expands each loop context in LCs on the left-hand side by all possible
combinations of back edges (that is, the power-set P) from the right-hand side:

LCs×BEs ∶= �
lc∈LCs

�
� �

edges∈P(BEs) lc∪edges
�
� .

Given an incoming loop context {ε} and two back-edges � and ℘ ending in n, the × operation
yields the loop contexts: {{ε},{ε,�},{ε,℘},{ε,�,℘}}.

At block n, the analysis kills all loop contexts from ReachingLCs(n) that are not current at
n. A loop context lc is not current at n if it contains a back-edge x⇀ y that is not a loop edge
for n. We say that x⇀ y loops around n if the control-flow graph contains at least one path from
n to n that contains x⇀ y:

KillLCs(n) ∶= {lc ∈ LoopCtxtsin(n) � ∃x⇀ y ∈ lc such that x⇀ y does not loop around n}.
By killing all loop contexts that do not actually loop around n, LoopCtxts(n) contains only

“active” loop contexts. Note, however, that killing elements from LoopCtxts(n) does not affect
the other components of State(n). Particularly, no elements are removed from TaskVars(n) by
this operation.

Using the definitions for ReachingLCs(n) and KillLCs(n), the meet operator for
LoopCtxtsin(n) becomes:

LoopCtxtsin(n) ∶= ReachingLCs(n)�KillLCs(n).
In the sor example CFG from Figure 4.3 and from Table 4.1, computing LoopCtxtsin(BB4)

of the join-block BB4 results in the set of loop contexts {{ε},{ε,�}} by expanding the incom-
ing loop context {ε} from BB2 with the back edge �. Because basic block BB5 is inside the
loop of �, no loop contexts are killed and therefore LoopCtxtsout(BB4) = LoopCtxtsin(BB5) ={{ε},{ε,�}}. At the return block BB7 (not shown in Table 4.1), however, the loop context
containing � would be killed resulting in LoopCtxtsout(BB7) = {{ε}}.
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Computing TaskVarsin(n) and VarMapin(n): The basic operation when computing task
variables flowing into basic block n is to union all task variables that were defined by all prede-
cessors. However, if n is a loop-head, we must save task variables that are invariant to the loop
across loop iterations. In SSA, loop invariant task variables are simply all task variables that
were defined before block n.

To clarify this idea, consider a loop-contextualized task variable [lc,a] that has been defined
before block n and n is a loop-head for a back-edge m⇀ n. A use of the SSA-variable a inside
the loop will always refer to the loop-invariant task variable [lc,a], regardless of how often the
control-flow includes the edge m⇀ n. The analysis models this behavior by creating a mapping[lc∪{m⇀ n},a]� [lc,a] in VarMap(n) that maps a inside the loop to the loop-invariant task
variable from before the loop.

The task variables that are invariant to a loop starting at node n (if any) are the task variables
that flow into n through non-back-edges:

InvariantTaskVars(n) ∶= �
m∈pred(n) where m⇀n∉BackEdges

TaskVarsout(m).

The new task variables generated at node n are then all the invariant task variables extended
by each back-edge ending in n:

GenTaskVars(n) ∶= {[lc∪{m⇀ n},a] � [lc,a] ∈ InvariantTaskVars(n)
∧m⇀ n ∈ BackEdges}.

Given GenTaskVars(n), computing TaskVarsin(n) is a simple set union that collects all the
incoming task variables and adds the generated information:

TaskVarsin(n) ∶= �� �
m∈pred(n)TaskVarsout(m)��∪GenTaskVars(n)

Computing the mappings VarMapin(n) is somewhat more complex because it pursues two
goals: First, we must save loop invariant task variables from one loop iteration to the next by
mapping the loop-contextualized task variable inside the loop to its corresponding loop invariant
counterpart. Second, if a task variable is updated inside a loop and escapes the loop, we must
capture the fact that the task variable after the loop will point to the value from the last iteration.

The first goal is computed by the function GenVarMaps(n). For each loop-contextualized
task variable that is invariant to the current loop, GenVarMaps(n) contains a mapping from the
version inside the loop to the loop invariant version:

GenVarMaps(n) ∶= {[lc∪{m⇀ n},a]� [lc,a] � [lc,a] ∈ InvariantTaskVars(n)
∧m⇀ n ∈ BackEdges}.
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The second goal is implemented by the two functions KilledPhis(n) and EscapeLoop(n).
In SSA-form, a variable can only escape a loop through a Φ-variable and every Φ variable
generates at least one entry in VarMaps(n). On exiting a loop �, we first kill all mappings of Φ
variables associated with � and then add new mappings for the remaining loop contexts (that do
not contain �) to point to the last version created in the loop.

We define the function KilledPhis(n) to collect all Φ task-variables that were defined in a
predecessor node m ∈ preds(n), where m is a loop head for an edge that does not loop around n:

KilledPhis(n) ∶= {a � a is Φ variable defined in m
∧m ∈ preds(n)
∧x⇀m ∈ BackEdges
∧x⇀m does not loop around n}.

For each killed task variable a ∈ KilledPhis(n) and each remaining loop context lc ∈
LoopCtxtsin(n), the function EscapeLoop(n) creates a mapping from [lc,a] to the most spe-
cific task variable version from inside the loop:

EscapeLoop(n) ∶= {[lc,a]� spec � a ∈KilledPhis(n)
∧lc ∈ LoopCtxtsin(n)∧a is Φ defined in m
∧spec is most specific version in m}.

The most specific version of a task variable is the version with the most specific (that is,
longest) loop context of a task variable definition from inside the loop. If no most specific ver-
sion can be found (e.g., for a loop that schedules tasks conditionally), the most specific version
is the empty set. Given the functions GenVarMaps(n), KilledPhis(n) and EscapeLoop(n), the
meet operator for VarMapin(n) is defined as:

VarMapin(n) ∶= ��
�
�
�
� �

m∈preds(n)VarMapout(m)��∪GenVarMaps(n)���KilledPhis(n)��∪EscapeLoop(n)

In the running example from Figure 4.3 and Table Table 4.1, basic block BB4 is a loop-
head for the back-edge �. The existing task variables with IDs 0,1,2, and 3 are forwarded from
BB2 to BB4 due to the set-union of the predecessors’ task variables. At BB4, task variables
0,1,2, and 3 are also loop invariant. Therefore, GenTaskVars(BB4) extends those loop invari-
ant variables with the loop edge �, resulting in the task variables with IDs 4,5,6, and 7, and
GenVarMaps(BB) maps those new versions to their loop invariant counterparts.

In the second analysis iteration (not shown in Table 4.1), the task variables generated in-
side the loop at basic block BB5 (IDs 8,9,10,11) would be merged back into TaskVarsin(BB4).
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However, because those task variables are not loop invariant, GenTaskVars(BB4) will not ex-
pand them in the second analysis iteration and no new task variables will be created.

This example does not contain Φ task variables and therefore no mappings are killed and
re-mapped on the loop exit. Section 4.2.2 presents an example that demonstrates the handling
of Φ task variables.

Computing HBEdgesin(n): When multiple control flows meet at a join node in the CFG, the
analysis must only consider happens-before edges that are genuine. If there is a flow through
the CFG, for example, where two task variables are ordered and another flow where the same
task variables are not ordered, the analysis must conservatively assume unordered-ness.

KillHBEdges(n) computes the set of edges that are not genuine at node n. For all pairs
o, p of predecessor blocks of n, KillHBEdges(n) checks that if o and p both “know” about two
loop-contextualized task variables [lc1,a] and [lc2,b], they also agree on the existence of an
happens-before edge [lc1,a]→ [lc2,b]. If block o contains the edge [lc1,a]→ [lc2,b] but block
p does not, the edge must be killed at n:

KillHBEdges(n) ∶= {[lc1,a]→ [lc2,b] � ∃o, p ∈ preds(n) such that

[lc1,a],[lc2,b] ∈ TaskVarsout(o)∧ [lc1,a],[lc2,b] ∈ TaskVarsout(p)
∧ [lc1,a]→ [lc2,b] ∈HBEdgesout(o)∧ [lc1,a]→ [lc2,b] ∉HBEdgesout(p)}

Given KillHBEdges(n), the meet operator for HBEdgesin(n) is simply the union of all
HBEdgesout(m) for all predecessors m minus the happens-before edges that are killed at n:

HBEdgesin(n) ∶= �� �
m∈pred(n)HBEdgesout(m)���KillHBEdges(n)

In the example analysis shown in Table 4.1, no edges are killed at BB4. Even though (tem-
porarily) the incoming control flows contain different happens-before edges, they only disagree
on happens-before edges of disjoint sets of task variables.

Also no edges are killed at the return block BB7. HBEdgesout(BB1) coming from BB1⇀
BB7 does not contain any happens-before edges while ultimately HBEdgesout(BB5) represents
the whole resulting graph. Because BB1 does not know about any of the task variables, however,
the meet operation at BB7 can keep all happens-before edges, concluding that if any of the task
variables in TaskVarout(BB4) is created, the edges in HBEdgesout(BB4) are created, too.

Node transfer function

The transfer function Trans of the data-flow analysis takes the input state Statein(n) of a block
n and computes Stateout(n) depending on the body of n:

Stateout(n) = Trans(Statein(n)).
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For simplifying the presentation of the formulas, we assume that a basic block n in the
control-flow graph consists of at most one statement. It is straight forward to explode a complex
basic block that consists of a list of statements (such as the basic blocks from the running
example) into a chain of small basic blocks each of which contains at most one statement.

For all statements s that are unrelated to task scheduling and task ordering, the trans-
fer function is the identity function and leaves the state unchanged: Transs ∶= Stateout(n) =
Statein(n). This leaves four statements that have a non-trivial transfer function, namely
schedule-statements, →-statements, assignment of task variables, and SSA-Φ-functions for
task variables. The following paragraphs explain each of those four cases in detail.

schedule statements: The statement a = schedule A() at node n defines the SSA-variable
a. The corresponding transfer function Transa = schedule A() adds a loop-contextualized task
variable [lc,a] for each loop context lc ∈ LoopCtxtsin(n) the statement may be executed in.
Formally, the set of loop-contextualized task variables defined by statement a = schedule A()
is defined as:

De f inedTV s(n) ∶= �
lc∈LoopCtxtsin(n)

[lc,a].
When a loop-contextualized task variable tv is defined, we remove all edges from the set

HBEdgesin(n) that have tv as a source or target node. Killing those edges makes sure, that
an edge created inside a loop does not get propagated to control-flow paths where the edge is
not created when the data-flow analysis visits n multiple times. For genuine edges, the edges
will be re-created when the block with the corresponding →-statement is visited again. Given
De f inedTV s(n), KillEdges(n) computes the edges that must be killed:

KillEdges(n) ∶= {x→ y � x ∈De f inedTV s(n)∨y ∈De f inedTV s(n)}.
With De f inedTV s(n) and KillEdges(n), the transfer function for the statement a =

schedule A() at node n is:

Transa = schedule A() ∶=
�������������

LoopCtxtsout(n) = LoopCtxtsin(n)
TaskVarsout(n) = TaskVarsin(n)∪De f inedTV s(n)
VarMapout(n) = VarMapin(n)
HBEdgesout(n) = HBEdgesin(n)�KillEdges(n)

In the running example from Table 4.1, if BB5 were visited a second time, the first two
schedule statements in BB5 would kill the edges 8 → 3, 10 → 3, 3 → 9, 3 → 11, 9 → 2, and
11→ 2, effectively “re-setting” HBEdges(BB5) to the state of HBEdges(BB2). However, all
those edges are immediately re-created by the two subsequent →-statements.

→-statements: A statement a→b at node n defines edges in HBEdgesout(n). In each loop
context lc ∈ LoopCtxtsin(n), a and b are represented by different loop-contextualized versions[lc,a] and [lc,b].
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VarMap(n) contains mappings for loop-contextualized versions of loop invariant task vari-
ables as well as task variables defined by Φ-functions. The function Dere f “de-references” a
task variable [lc,a] into a set of mapped task variables. If VarMapin(n) contains one or more
mappings for [lc,a], Dere f returns the set of the mapped loop-contextualized task variables. If
no mappings are found, Dere f returns a singleton set containing [lc,a]:

Dere f ([lc,a]) ∶=
�����������

�tv[lc,a]�tv∈VarMapin(n) if [lc,a] ∈Keys(VarMapin(n)),
{[lc,a]} else.

The edges defined by statement a→b are then the edges between the task variables of the
left-hand side and right-hand side de-referenced in each loop context lc:

De f inedHBEdges(n) ∶= �
lc∈LoopCtxtsin(n)

Dere f ([lc,a]) �→Dere f ([lc,b]).
The operation A �→B creates an edge for all combinations of task variables from the left-hand

side and the right-hand side. Given the function De f inedHBEdges(n), the transfer function for
statement a→b at node n is:

Transa→b ∶=
�������������

LoopCtxtsout(n) = LoopCtxtsin(n)
TaskVarsout(n) = TaskVarsin(n)
VarMapout(n) = VarMapin(n)
HBEdgesout(n) = HBEdgesin(n)∪De f inedHBEdges(n)

In the example from Table 4.1 the row labeled HBEdgesout(n) shows the evolution of
HBEdges(n) and the happens-before edges created by the →-statements in BB2 and BB5. The
edges created in BB2 (and its only loop context {ε}) are simply propagated to BB3, BB4, and
BB5.

The meet operation � at BB4 then adds another loop context {ε,�} for the back-edge � and
creates mappings for the loop invariant task variables now, later, nextRound, and barrier.

Basic block BB5 contains the three →-statements phase1→barrier, barrier→phase2,
and phase2→nextRound. For loop context {ε}, De f inedHBEdges(BB5) adds happens-before
edges between the corresponding task variables, resulting in the edges 8→3,3→9,9→2.

For the second loop context {ε,�}, Dere f ([{ε,�},barrier]) finds a mapping in
VarMapin(BB5) which it uses to de-reference [{ε,�},barrier] to [{ε},barrier] (ID3). Simi-
larly, [{ε,�},nextRound] is re-referenced to [{ε},nextRound] (ID2). For the loop context {ε,�},
the three →-statements therefore result in the edges 10→3, 3→11, and 11→2.

The mapping of the loop invariant task variables from the inner iteration context {ε,�} to
the outer context {ε} creates the “double diamond pattern” shown in the graph of basic block
BB5 in Table 4.1. This graph contains enough information for the subsequent steps to deduce
that the Round() task method may schedule multiple unordered phase1 tasks (IDs 8 and 10)
which are all ordered before a single barrier task (ID 3). Further, the barrier is ordered before
potentially multiple phase2 tasks (IDs 9 and 11) which are ordered before a single nextRound
(ID 2). Finally, nextRound is ordered before the task-parameter later (ID 1).
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Assignment statements involving task variables: An assignment b = a between two SSA
task variables a and b at node n results in the definition of a loop-contextualized version of b for
each loop context lc ∈ LoopCtxtsin(n). In addition, for each loop context lc we add a mapping
from the corresponding version of b to the corresponding version of a to capture the semantics
of the assignment:

Transa = b ∶=
�������������

LoopCtxtsout(n) = LoopCtxtsin(n)
TaskVarsout(n) = TaskVarsin(n)∪{[lc,b] � lc ∈ LoopCtxtsin(n)}
VarMapout(n) = VarMapin(n)∪{[lc,b]� [lc,a] � lc ∈ LoopCtxtsin(n)}
HBEdgesout(n) = HBEdgesin(n)

Φ-function statements involving task variables: Whenever multiple SSA-copies of a single
source-code variable reach a join node in the control-flow graph, an SSA-Φ-function defines a
new copy of the variable and lists the reaching SSA copies in its arguments. In the Φ-function,
the argument position corresponds to a particular control-flow predecessor. For a Φ-statement
aΦ =Φ(a1, . . . ,ai)we define a function edge(a j) that, given an argument a j with 1≤ j ≤ i, returns
the corresponding control-flow edge m⇀ n that the parameter represents. Using edge(a j), we
can classify each parameter a j of a node n by whether edge(a j) is a back edge or not.

In a given loop context lc, a parameter a j that does not correspond to a back edge only
contributes to the final Φ variable if lc does not represent a context where the loop at n has been
taken; that is, lc must not contain any back edge m⇀ n that ends in n. In this case, we call lc to
be loop invariant at node n. For a given loop context lc, a parameter a j that does correspond to
a back edge contributes to the final Φ variable if edge(ai) is present in lc. In this case, we de-
reference the value of a j in lc (for the case where the loop has been taken) as well as in context
lc� edge(a j) (for the case where the loop is entered for the first time). The auxiliary helper
function MapInLC(lc,a j) computes the contribution of parameter a j in a given loop context lc
as a generated mapping for the Φ variable defined by statement aΦ =Φ(a1, . . . ,ai):

MapInLC(lc,a j) ∶=

���������������������������

[lc,aΦ]�Dere f (lc,a j) if edge(a j) ∉ BackEdges∧lc is loop invariant at n

[lc,aΦ]�Dere f (lc,a j)∪Dere f (lc�edge(a j),a j) if edge(a j) ∈ BackEdges∧edge(a j) ∈ lc

� else.

The variable mappings generated by statement aΦ =Φ(a1, . . . ,ai) is then given as the union
of single mappings over all current loop contexts and all parameters a1, . . . ,ai:

GenPhiMaps(n) ∶= �
lc∈LoopCtxtsin(n)

� �
a j∈a1,...,ai

MapInLC(lc,a j)� .

In addition to the mappings in GenPhiMaps(n), the transfer function for Φ functions also
adds the loop-contextualized Φ-copy of the defined Φ task variable to TaskVarsout(n):
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1 class ChainedSteps {
2

3 task Start(int numRounds, Task later) {
4 Task prev = now;
5

6 for(int i = 0; i < numRounds; i++) {
7 Task step = schedule this.Step(i);
8 Task print = schedule this.Print(step);
9

10 prev→step;
11 step→print;
12

13 prev = step;
14 }
15

16 prev→later;
17 }
18

19 private task Step(int num) {
20 now.result = //do computation;
21 }
22

23 private task Print(Task step) {
24 System.out.println(step.result);
25 }
26 }

Start()

later

Step(0)

Step(1)

Step(2)

Print(●)

Print(●)

Print(●)

now

Figure 4.7: Example with happens-before edges between tasks that were scheduled in different
loop iterations. The diagram on the right depicts the schedule for the case numRounds = 3.

TransaΦ=Φ(a1,...,ai) ∶=
�������������

LoopCtxtsout(n) = LoopCtxtsin(n)
TaskVarsout(n) = TaskVarsin(n)∪{[lc,aΦ] � lc ∈NewLCs(n)}
VarMapout(n) = VarMapin(n)∪GenPhiMaps(n)
HBEdgesout(n) = HBEdgesin(n).

The running sor example from Table 4.1 does not include a task Φ-variable but the next
section presents an example that demonstrates how taskΦ-variables are handled by the analysis.

Example for handling task Φ-variables

This section presents an example that demonstrates how the data-flow analysis extracts the loop-
contextualized task-variable ordering graph from a task method that includes task Φ-variables.

Figure 4.7 shows the program source and the resulting runtime schedule. The Start() task
method contains a loop that schedules multiple Step() tasks and orders them in a linear chain.

The chain is created by keeping track of the previous, stored in variable prev, and ordering
the current step to happen after the previous step prev on line 10. Initially, prev is set to now on
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iΦ = Φ(i0, i1);
prevΦ = Φ(prev0, prev1);

if(iΦ < numTasks)

Task step = schedule this.Step(iΦ);
Task print = schedule this.Print(next);

prevΦ→step; 

step→print; 

prev1 = step;

Task prev0 = now;
int i0 = 0;

int i1 = iΦ + 1;

return;

Uncaught
Exceptions

Params: int numTasks, Task later

BB1:

BB2:

BB3:

BB4:

BB5:

true false

prevΦ→later;

BB6:

l

Figure 4.8: Control-flow graph for the Start() task method of the ChainedSteps class from
Figure 4.7

line 4. At the end of each iteration, prev is updated on line 13 to reference the next step-task
that was scheduled on line 7.

In addition to the chained Step() tasks, Start() also schedules one Print() task for each
step on line 8. Because a print-task depends on the result of its corresponding step task
(print prints the result of step on line 24), print is ordered after step on line stepHBPrint

The right side of Figure 4.7 shows the runtime schedule for the case where numRounds = 3.
As expected, the Step() tasks together with the Start() task and later form an ordered chain.
Each Print() task is ordered only with its one corresponding Step() task. The Print() tasks
are unordered among themselves and they are unordered with respect to other Step() tasks.

The control-flow graph of the Start() method is shown in Figure 4.8. As in the sor ex-
ample, the control-flow graph has only one back-edge �. However, the loop-head BB2 in this
example contains a Φ-function for the task variable prev, representing the multiple assignments
of prev on lines 4 and 13 in the static single-assignment form.

Table 4.2 presents the evolution of the data-flow value Stateout(n) for a selection of basic
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blocks. The interesting part is the analysis of the task Φ-variable prevΦ.
Due to the assignment prev0 = now in basic block BB1, VarMapout(BB1)maps [{ε},prev0]

(ID 2) to [{ε},now] (ID 0).
The loop head BB2 defines the task variable prevΦ as either prev0 (when coming from BB1)

or prev1 (when coming from BB4). In the first iteration, only [{ε},prev0] (ID 2) is defined for
the two variables prev0 and prev1 in the two current loop contexts {ε} and {ε,�}. Therefore, the
transfer function for prevΦ =Φ(prev0,prev1) creates for loop context {ε} a mapping between[{ε},prevΦ] (ID 6) and [{ε},now] (ID 0) which was de-referenced from [{ε},prev0] (ID 2).
For the other loop context {ε,�}, variable prevΦ is mapped to the empty set (ID 7).

The assignment prev1 = step in BB3 creates a mapping from [{ε},prev1] (ID 10) to[{ε},step] (ID 8) for the {ε} loop context; for {ε,�}, it creates a mapping [{ε,�},prev1] (ID 13)
to [{ε,�},step] (ID 11). After basic blocks BB3 and BB4 have been visited at least once, prev0
and prev1 are defined for both loop contexts. Therefore, when BB2 is visited in the second iter-
ation, the transfer function for statement prevΦ=Φ(prev0,prev1) can finally generate mappings
for prevΦ in both current loop contexts {ε} (ID 6) and {ε,�} (ID 7). In loop context {ε}, only
the first parameter prev0 contributes because it corresponds to the non loop edge BB1⇀ BB2.
After de-referencing [{ε},prev0] (ID 2) to ID 0, the mapping 6� {0}, which has already been
generated in the first iteration, remains unchanged. In loop context {ε,�}, only parameter prev1
(corresponding to edge �) contributes. Therefore, the second clause of MapInLC({ε,�},prev1)
used in the transfer function forΦ statements generates a mapping from [{ε,�},prevΦ] (ID 7) to
the two versions [{ε,�},prev1] (ID 13) and [{ε,�},prev1] (ID 10). After de-referencing those,
we get the mapping 7� {8,11} in the second iteration at BB2.

After this, at BB3 the transfer function for statement prevΦ→step creates the two happens-
before edges 8→ 11 and 11→ 11 because for loop context {ε,�}, prevΦ de-references to the two
task variables 8 and 11 and step de-references to task variable 11. The edge 11→ 11 represents
the fact that all step tasks are ordered across loop iterations.

Basic block BB5 is the first block outside the loop. Therefore, the loop context {ε,�} is
killed, because edge � does not loop around BB5. The killing of edge � causes the meet operator� to kill all mappings that contain task variable prevΦ, namely the mappings of ID 6 and ID 7.
At the same time, the meet operator � re-maps the task variable prevΦ after the loop � (that is, for
loop context {ε}) to the most specific version from inside the loop, which is [{ε,�},prev1] (ID
13). ID 13 in turn maps to [{ε,�},step] (ID 11) resulting in the generated mapping 6� {11}.
The statement prevΦ→later in BB5 thus creates the edge 11→ 1 in HBEdgesout(BB5).

The result of the data-flow analysis is the graph shown for block BB5 in Table 4.2. This
graph contains enough information for the subsequent steps to deduce that all step tasks are
ordered (IDs 8 and 11) with respect to each other and with respect to later (ID 1). Furthermore,
the graph shows that there may exist multiple print tasks (IDs 9 and 12) that are ordered with
some of the step tasks but unordered with respect to other step tasks and unordered with respect
to each other. The information that some print tasks are ordered with some step tasks will be
lost in the final result of the schedule analysis, however. Instead, the schedule analysis will
conclude that all Step() tasks are ordered with each other and with later but that (some) Step
() may be parallel with (some) Print() tasks.
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BB1 BB2 BB3 BB5
iteration 1

LoopCtxtsout(n) {ε} {ε},{ε,�} {ε},{ε,�} {ε}
TaskVarsout(n) 0 ∶ [{ε},now]

1 ∶ [{ε},later]
2 ∶ [{ε},prev0]

0,1,2,
3 ∶ [{ε,�},now]
4 ∶ [{ε,�},later]
5 ∶ [{ε,�},prev0]
6 ∶ [{ε},prevΦ]
7 ∶ [{ε,�},prevΦ]

0,1,2,3„4,5,6,7,
8 ∶ [{ε},step]
9 ∶ [{ε},print]
10 ∶ [{ε},prev1]
11 ∶ [{ε,�},step],
12 ∶ [{ε,�},print],
13 ∶ [{ε,�},prev1]

0,1,2,3,4,5,6,7,8,9,10,
11,12,13

VarMapout(n) 2� {0} 2 � {0}, 3 � {0},
4 � {1}, 5 � {0},
6� {0}, 7��

2 � {0}, 3 � {0},
4 � {1}, 5 � {0},
6� {0}, 7��, 10�{8}, 13� {11}

2 � {0}, 3 � {0},
4 � {1}, 5 � {0},
6 � �, 10 � {8},
13� {11}

HBEdgesout(n) � � 12

98

11

0

�
iteration 2

LoopCtxtsout(n) {ε} {ε},{ε,�} {ε},{ε,�} {ε}
TaskVarsout(n) 0,1,2 0,1,2,3,4,5,6,7,8,9,10

11,12,13
0,1,2,3,4,5,6,7,8,9,10
11,12,13

0,1,2,3,4,5,6,7,8,9,10
11,12,13

VarMapout(n) 2� {0} 2 � {0}, 3 � {0},
4 � {1}, 5 � {0},
6 � {0},
7 � {8,11},
10� {8}, 13� {11}

2 � {0}, 3 � {0},
4 � {1}, 5 � {0},
6� {0}, 7� {8,11},
10� {8}, 13� {11}

2 � {0}, 3 � {0},
4 � {1}, 5 � {0},
6� {11}, 10� {8},
13� {11}

HBEdgesout(n) � 12

98

11

0

12

98

11

0

12

98

11

0

iteration 3
LoopCtxtsout(n) {ε} {ε},{ε,�} {ε},{ε,�} {ε}
TaskVarsout(n) 0,1,2 0,1,2,3,4,5,6,7,8,9,10,

11,12,13
0,1,2,3,4,5,6,7,8,9,10,
11,12,13

0,1,2,3,4,5,6,7,8,9,10,
11,12,13

VarMapout(n) 2� {0} 2 � {0}, 3 � {0},
4 � {1}, 5 � {0},
6 � {0},
7 � {8,11},
10� {8}, 13� {11}

2 � {0}, 3 � {0},
4 � {1}, 5 � {0},
6� {0}, 7� {8,11},
10� {8}, 13� {11}

2 � {0}, 3 � {0},
4 � {1}, 5 � {0},
6� {11}, 10� {8},
13� {11}

HBEdgesout(n) � 12

98

11

0

12

98

11

0

121

98

11

0

Table 4.2: Task-scheduling and task-ordering effect analysis of the ChainedSteps example.
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4.2.3 Step 3: Computing relations between task variables

The loop-contextualized task-variable ordering graph computed in the previous step is the graph
G = {TaskVarsin(exit),HBEdgesin(exit)} that results at the exit node of the task-method’s
control-flow graph. Because this graph contains copies of local task variables for different
loop contexts, the graph is very detailed. In general, this level of detail cannot be exploited by
the rest of the compiler analyses such as the points-to analysis and the escape analysis, however,
because those analyses work on the level of SSA-variables and do not have any notion of loop
context. Therefore, the additional detail present in the loop-contextualized task-variable order-
ing graph cannot be exploited by the schedule analysis, because the precision of the schedule
analysis is bound by the precision of the points-to information.

This step summarizes the loop-contextualized task-variable ordering graph into relations
between non-loop-contextualized (SSA) task variables. This brings the schedule analysis onto
the same level of detail as the rest of the compiler analyses and allows the compiler to integrate
the results of the different analyses.

Computing relations between non-loop-contextualized task variables essentially “folds” all
occurrences of a task variable into a single node. The function Occ(a) computes the set of
(loop-contextualized) occurrences of the SSA task variable a in G. A loop-contextualized task
variable [lc,b] is an occurrence of a if both refer to the same SSA-variable (that is, a=b) and if[lc,b] is not used as the key in a variable mapping5:

Occ(a) = {[lc,b] ∈ (TaskVarsout(exit)�Keys(VarMapout(exit))) where a = b}
Folding all occurrences of a task variable into a single node of course also affects the

happens-before edges in the graph. As an example, consider a simple graph [lc1,a]→ [lc1,b]→[lc2,a]. While it is true that [lc1,a] happens-before [lc1,b], it is not true that a→b. Neither is it
the case that b→a. Declaring a and b potentially parallel, however, is undesirable, too, because
they in fact are strictly ordered, even though the direction is undefined.

Instead of a single directed →-relation between task variables, this step computes for each
pair of (non-loop-contextualized) task variables one of four possible relations:

a REL b ∶∶=
�����������������

a � b if a = b∧ �Occ(a)� = �Occ(b)� = 1,
a
⋅→ b if ∀t ∈Occ(a),v ∈Occ(b) ∶ t ∗→ v,

a
⋅↔ b if ¬(a ⋅→ b)∧∀t ∈Occ(a),v ∈Occ(b) ∶ t ∗→ v∨v ∗→ t,

a
⋅� b if ∃t ∈Occ(a),v ∈Occ(b) ∶ t

∗� v∧v
∗� t.

The symbols t and v represent loop-contextualized task variables whereas a and b represent
non-loop-contextualized task variables. v is reachable from t, written as t ∗→ v, if there is a
genuine transitive ordering of t and v in G. A transitive ordering is genuine if a path from t
to v exists in G that only uses nodes w where the existence of t implies the existence of all
intermediate nodes w.6 If t

∗� v then G does not contain a genuine path from t to v.
5Loop-contextualized task variables that map to other loop-contextualized task variables are always de-

referenced and therefore not part of the happens-before graph.
6see Section 3.7.4 for more information on genuine edges.



64 CHAPTER 4. SCHEDULE ANALYSIS IN OPTIMIZING COMPILERS

now
now � later

later
⋅� � nextRound

nextRound
⋅← ⋅→ � barrier

barrier
⋅← ⋅� ⋅� � phase1

phase1
⋅← ⋅→ ⋅→ ⋅→ ⋅� phase2

phase2
⋅← ⋅→ ⋅→ ⋅← ⋅← ⋅�

Figure 4.9: The relation REL between the task variables computed from the loop-contextualized
task-variable ordering graph for the running example from Table 4.1.

The singleton relation � is used only between a task variable and itself, never between two
different task variables. a � a states that task variable a only occurs once in G. This implies that
a is not a schedule site inside a loop. If a � a then at runtime variable a references only one task
object. The relation a ⋅→ b is true if all occurrences of a are ordered before all occurrences of b
in the given task method. If all occurrences of a and b are ordered in G, but the directionality of
the paths varies, then a and b are un-directionally ordered, written a ⋅↔ b. In any other case, a
and b are considered to be potentially parallel, written as a

⋅� b.
For the running example, this step computes the relations shown in Figure 4.9 given the

loop-contextualized task-variable ordering graph G shown at basic block BB5 in Table 4.1.
The task variables now, later, nextRound, and barrier are all singletons. The schedule

sites defining task variables phase1 and phase2 on the other hand may be executed multiple
times and therefore each occur twice in G (as nodes 8+10 for phase1 and as nodes 9+11 for
phase2). Because the occurrences are unordered, the analysis deduces phase1

⋅� phase1 and
phase2

⋅� phase2.
With the exception of later, which is potentially unordered with now, the other tasks are all

scheduled by now and are therefore ordered after now (the left column in Table 4.1).
All phase1 tasks (nodes 8+10) will be ordered before the singleton barrier (node 3) and

(transitively) before all phase2 (nodes 9+11), nextRound (node 2), and later (node 1). barrier
(node 3), however, may be parallel to nextRound (node 2) and later (node 1) because if the
loop starting at basic block BB4 is not executed at all, there will be no transitive ordering of
barrier via one or more phase2 tasks. In other words, there is no genuine path between the
occurrence of barrier (node 3) and the occurrence of nextRound (node 2) in the example. The
analysis therefore concludes barrier

⋅�nextRound (and consequently barrier
⋅�later).

4.2.4 Step 4: Computing unordered task-variable/task-object pairs

The fourth step is the computation of a relation taskNotOrdered(a,B). The analysis computes
this relation by comparing the relation REL for all pairs of task variables and recording task
objects that may directly or indirectly be unordered with each task variable.

In addition to the relation a MAY SCHEDULE A, which is the direct result of a points-to
analysis, the computation of taskNotOrdered() uses a relation C MAY BE SUBTASK OF A. The
this relation is computed by a simple reachability analysis. Starting with all task methods A
() that are possible entry points of task object A, C MAY BE SUBTASK OF A collects all task



4.2. THE SCHEDULE ANALYSIS ALGORITHM 65

a b

task T() {

}

A

C D

B

(a) UNORDEREDVARS: Variables
a and b are unordered; a will be
unordered with b’s task B and all
of B’s subtasks D. Likewise, b
is unordered with A and C (not

shown).

a b

task T() {

}

A

C D

B

(b) ORDEREDVARS: a and b are or-
dered; a is ordered with task B but
unordered with any of B’s subtasks
D. Likewise, b is unordered withA’s
subtasks C (not shown).

a b

task T() {

}

A

C D

B

(c) HAPPENSAFTER-NOPARAM:
a is ordered with B and (transi-
tively) all of B’s subtasks D. In
the other direction, b is ordered
with A but it is not ordered with
any of A’s subtasks C.

a(●) b

task T() {

}

A

pc d

e

task A(●) {

}

C D

E

B

F H

G

(d) HAPPENSAFTER-WITHPARAM: as
before, b is ordered with A. In addition,
b is ordered with C, D andH through pa-
rameter p. b is unordered with only some
of A’s sub-subtasks: F , E , and G.

Figure 4.10: Illustrations for computing the taskNotOrdered relation.

objects C that may be created by any schedule-statement reachable from A() in the call graph.
Before we present the rules for computing taskNotOrdered() more formally, Figure 4.2.4

illustrates some of the cases for different task variable relations a REL b. Panel 4.10(a) shows
the case where a

⋅� b. Because the two task variables a and b are unordered, a is unordered
with the task B represented by b as well as all of B’s subtasks D. Likewise, b is unordered with
A and all of A’s subtasks C.

The case where a
⋅↔b is shown in Panel 4.10(b). Here, the tasks directly represented by a

and b are ordered. However, because the direction of the happens-before edge is unknown it
is not necessarily the case that a is transitively ordered (via creation edges) with B’s subtasks
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UNORDEREDVARS
a
⋅� b in T() b ≠ now

b MAY SCHEDULE B in T() D MAY BE SUBTASK OF B

taskNotOrdered(a, B ∪ D) in T()

ORDEREDVARS
a
⋅↔ b in T() b MAY SCHEDULE B in T()

D MAY BE SUBTASK OF B

taskNotOrdered(a,D) in T()

HAPPENSAFTER–NOPARAM
a
⋅→ b in T() a ≠ now

b IS NOT A PARAM TO a in T()

a MAY SCHEDULE A in T() C MAY BE SUBTASK OF A

taskNotOrdered(b, C) in T()

HAPPENSAFTER–WITHPARAM
a
⋅→ b in T() b IS ACTUAL PARAM n to a in T()

a MAY SCHEDULE A in T() A() IS ENTRY POINT OF A
p IS FORMAL PARAM n of A() taskNotOrdered(p, C) in A()

taskNotOrdered(b, C) in T()

Figure 4.11: Rules for computing unordered variable/task pairs

D. Therefore, we must assume that a is potentially unordered with B’s subtasks D. Likewise, b
may be unordered with any of A’s subtasks C.

In Panel 4.10(c), the direction of the happens-before ordering between a and b is known. In
this case, a is not only ordered with task B represented by b but also with all of B’s subtasks D.
In the other direction, however, we must assume that b is unordered with A’s subtasks C.

The last panel, Panel 4.10(d), handles the special case of the now happens-before later
pattern introduced in Section 3.2. If task variable b is passed as a parameter to a and a

⋅→b then
the set of tasks that are potentially unordered with b can be reduced from all of A’s subtasks to
only those tasks that are unordered with the parameter p in A.

The formal rules for computing the relation taskNotOrdered are shown in Figure 4.11.
The first rule UNORDEREDVARS applies to the case where a

⋅�b. It selects for each task
variable a in the task method T() all task variables b that are unordered with respect to a. It
then concludes that all tasks B that may be scheduled by b as well as all subtasks D of B are
unordered with the task variable a.

For pairs of ordered variables a ⋅↔b the second rule ORDEREDVARS marks all subtasks D of
b’s task B to be unordered with a.

The final two rules handle pairs of task variables where the direction of the ordering is
known: a

⋅→b. For a given pair of schedule sites a and b, only one of the two subtask rules
applies, depending on whether b is used as a parameter to a or not.



4.2. THE SCHEDULE ANALYSIS ALGORITHM 67

If task variable b is not passed as a parameter to a, rule HAPPENSAFTER-NOPARAM ap-
plies. HAPPENSAFTER-NOPARAM is similar to rule ORDEREDVARS and marks all tasks C that
may be subtasks of any task A scheduled at a to be unordered with b.

The last rule HAPPENSAFTER-WITHPARAM specializes the case where b is passed as a
parameter to a in order to reduce the set of tasks that are considered potentially parallel to b.
Instead of simply taking all possible subtasks of A, this rules selects only those subtasks of A
that are unordered with respect to the corresponding parameter variable. This rule handles the
now happens-before later pattern described in Chapter 3.

Given relation REL of the running example shown in Figure 4.9, applying the rules from
Figure 4.11 results in the following conclusions:

• now, later, nextRound, and barrier are all singletons and do not add anything to
taskNotOrdered().

• Variable phase1 is located inside a loop and phase1
⋅�phase1. Therefore, rule UN-

ORDEREDVARS applies and concludes that taskNotOrdered(phase1, Phase1()) (plus
any tasks that Phase1() may directly or indirectly schedule).

• Similarly,
⋅� lets us conclude that taskNotOrdered(phase2, Phase2()),

taskNotOrdered(barrier, NextRound()), taskNotOrdered(nextRound, Barrier
()), and taskNotOrdered(later, Barrier()).

• For the parameter later, the relation MAY SCHEDULE returns the empty set. Therefore,
rule UNORDEREDVARS does not add to taskNotOrdered() for barrier

⋅�later and now⋅�later.

• All other pairs of task variables are ordered by directed ⋅→-relations:

– phase1 is ordered before barrier, phase2, nextRound, and later. Therefore,
phase1 is ordered with respect to all their subtasks through the implicit creation
edges. Neither HAPPENSAFTER rule applies.

– The barrier variable is ordered after phase1. Because it is not used as a parameter
to phase1, rule HAPPENSAFTER-NOPARAM applies and deduces that barrier is
unordered with any subtask that may be created by Phase1().

– Similar reasoning applies to the variable phase2, classifying it as potentially parallel
with subtasks of Phase1() and Barrier().

– The parameter later is passed along as a parameter to nextRound and ordered after
nextRound and therefore the HappensAfter-WithParam rule applies. Assuming that
in this example the tasks Barrier(), Phase1(), and Phase2() do not schedule any
subtasks, this rule concludes that parameter later is ordered with all other tasks.

4.2.5 Step 5: Computing unordered task-object/task-object pairs

The final step is to compute what task objects may be unordered and therefore potentially par-
allel to each other. Figure 4.12 shows the two rules that are involved in this computation.
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PARALLELTASKS–SCHEDULESITE
a MAY SCHEDULE A in T()

taskNotOrdered(a, B) in T()

parallel(A, B)
PARALLELTASKS–SIBLINGS

a ≠ b in T()

a MAY SCHEDULE A in T() b MAY SCHEDULE B in T()

C MAY BE SUBTASK OF A D MAY BE SUBTASK OF B

parallel(C,D)

Figure 4.12: Computing parallel tasks

The first rule PARALLELTASKS-SCHEDULESITE states that if a schedule site a may sched-
ule task A, task A may be parallel to all tasks B that are not ordered with the variable a. This
information comes from the relation taskNotOrdered computed in the previous step.

The second rule PARALLELTASKS-SIBLINGS relates all subtasks of the tasks scheduled in
the same task method T(). Without parameter passing, even if the parent tasks are ordered there
is no way to order their subtasks with respect to each other. For cases with parameter passing,
however, this rule is overly conservative and introduces some imprecision. In an implementa-
tion, this rule can be further specialized to the case where a task variable that is ordered before
a parameter can be considered transitively ordered with the children of the parameter.

For the running example, the first rule ParallelTasks-ScheduleSite concludes that in task
method Round(), task Barrier() and NextRound() are potentially parallel. Further, it finds
that Phase1() is parallel to itself, as is Phase2() parallel to itself. Because in this example the
only task that creates subtasks is Round(), the second rule does not add any additional tasks to
the parallel() relation.

4.3 Implementation

We have implemented the schedule analysis in two different prototypes. The first prototype is
written mainly in Datalog and allows for rapid prototyping of new optimizations and analyses.
However, the Datalog prototype does not contain a code generation module to actually write
out optimized program code. This prototype therefore can only be used to report statistical data
but does not allow us to evaluate improvements when the optimized program is executed.

The second prototype is a bytecode-to-bytecode translating optimizing compiler fully imple-
mented in Java. Besides the schedule analysis and some basic optimizations, the Java prototype
implements a code generation phase that allows us to evaluate runtime behavior of optimized
programs.

This section gives a short overview of some of the implementation details for both proto-
types.
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4.3.1 Datalog implementation

The Datalog prototype is built on bddbddb as its Datalog backend. The source code of the Dat-
alog prototype is listed in Appendix A. The pre-processor implementing the first normalization
step uses the Wala framework [51] to transform the bytecode of the input program into static
single assignment (SSA) form and extract the initial extensional database for Datalog. The
results of the analysis are written into text files and can be manually inspected.

The Datalog points-to and escape analysis are extended forms of the analyses described by
Whaley and Lam [115] where the original call-graph numbering context sensitivity has been
replaced with a 1-task-object/1-receiver-object sensitivity. This means that the analysis distin-
guishes calls to a method not only based on the method name but also based on the method
receiver and the task in which the call happens. As opposed to the original approach, which
requires constructing a call-graph before the main analysis, our system computes the call-graph
at the same time as it computes the points-to sets while still providing good context sensitivity.

bddbddb represents boolean relations using binary decision diagrams (BDDs). BDDs are a
data structure that can efficiently represent large relations and provide efficient set operations.
However, BDD algorithms are highly sensitive to the size of the decision trees, which is deter-
mined by the order on the used variables. In the worst case, a bad variable order can increase the
size of the BDDs exponentially. Unfortunately, the problem of finding the best variable ordering
is NP-complete. The variable ordering used in our experiments seems to work reasonably well
but it is not known whether a significantly better ordering exists.

4.3.2 Java implementation

The Java prototype is implemented using Wala [51] for its analysis framework and Javassist [29]
for code generation.

After initializing Wala with all Java class files, the compiler first runs various analyses (see
below). During code generation, the prototype re-visits every class file and emits an optimized
version, depending on what optimizations have been chosen. The optimized class files are
written onto the file-system. Using the Java VM option -Xbootclasspath/p, the optimized
class files are pre-pended to the class-path. Pre-pending to the class-path allows for replacing
even classes from the standard Java library with their optimized counterparts.

The compiler runs the following analyses in the given order:

1. Points-to analysis: The Wala framework comes with a set of different configurable
points-to analyses that provide different tradeoffs between analysis time, used memory,
and precision. Points-to analyses can be configured with different strategies for their
context-sensitivity. As in the Datalog prototype, call graph construction happens along-
side the points-to analysis.

2. Reachability analysis: The reachability analysis takes the call graph and computes for
each task-method node the set of normal-method nodes that may be directly or indirectly
called by the task-method node.

3. Schedule analysis: The schedule analysis uses the points-to sets and the reachability
information to compute the relation parallel(TaskNode,TaskNode).
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4. Escape analysis: The escape analysis first collects all objects that are reachable from
static fields and all objects used as arguments to task methods and marks them as escaping.
From this set, the escape analysis iteratively marks all objects as escaping that may be
pointed-to by an escaping object. This is done until a fixed-point is reached.

5. Parallel read/write sets analysis: This analysis first collects for each task node p in the
call graph the set of objects that p or any node in the call graph reachable from p may
read and/or write. It then uses this information to collects for each task node n in the call
graph the objects that are read and/or written by tasks p that are parallel to n. The result
of the escape analysis allows this step to reduce the number of parallel reads or writes for
objects that do not escape n or p.

6. Bytecode read/write conflicts analysis: This analysis takes the context-sensitive results
of the parallel read/write sets analysis, where multiple call graph nodes may represent
different invocations of a single method m(), and assembles a conservative context-
insensitive view that can be used by the optimizations when working on an individual
method m().

Concrete optimizations typically take the result of the read/write conflict analysis to check
whether a given bytecode b in method m() may be involved in a read/read, read/write, write/read
or write/write conflict with any other bytecode that may access the same object in a parallel task.

4.4 Related work

Concurrency analysis with module interaction graphs. Based on the work of Callahan,
Kennedy, and Subhlok [24, 23], Duesterwald and Soffa [34] developed a data-race detection
technique using a data-flow framework. The data-flow analysis works on a graphical repre-
sentation of the program called a module interaction graph, and computes a partial execution
order of program regions. In a first phase, the analysis computes for each region r the sets
be f ore(r) and a f ter(r) containing regions that are ordered to execute before any operation in
region r and the regions ordered after all operations in r respectively. During this first phase,
parallel units (that is, program units that may execute concurrently with itself) are ignored. The
second phase of the algorithm consists of detecting parallel units by analyzing the previously
determined order at activation sites and appropriately updating the ordering sets for parallel
units. The approach presented by Duesterwald and Soffa assumes a synchronous intertask com-
munication through entry call and accept commands as defined by the rendezvous concept
of Ada’83 [64] but otherwise places no restrictions on the analyzed program, thus allowing
unstructured parallelism and arbitrary recursion. Ada’83 defines task types as limited types,
prohibiting assignment of task objects and task parameters with out mode. Task objects thus
behave as constants [64, p.9-4] and reduce possible aliasing of task objects. Together with the
rendezvous semantics of the intertask communication, restricted types make synchronization
analysis in Ada’83 somewhat easier than a comparable analysis for Java.

May happen in parallel analysis. The result of a may happen in parallel (MHP) analysis are
pairs of program statements that may be executed concurrently in a multi-threaded program. In
the past, researchers have developed different approaches for computing MHP information.
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Masticola and Ryder [80] describe an iterative algorithm for non-concurrency analysis that
identifies sets of statements in a concurrent program that can never happen in parallel. They
start out with an initial conservative assumption that all operations in one process may happen
in parallel with any operation in another process. A small set of refinements are then applied in
arbitrary order until a fixed point is reached.

Instead of focussing on statements that can never happen in parallel, Naumovich and
Avrunin [89] describe a data-flow algorithm for computing pairs of statements that may happen
in parallel. They show that their algorithm for computing MHP information subsumes at least
two of the four refinement steps from Masticola and Ryder while reducing the complexity sig-
nificantly. The improved precision and runtime is verified by a large set of Ada programs with
a rendezvous model of concurrency.

The differences in the way communications between threads of control are realized in Ada
and Java require different analysis approaches. Therefore, in [90] Naumovich, Avrunin, and
Clarke adapt the approach from [89] and describe an algorithm for computing MHP informa-
tion in threaded Java programs. Naumovich, Avrunin, and Clarke’s approach relies on a sim-
plified program structure where all methods need to be inlined and cloning is used to eliminate
polymorphism and aliasing. Lin and Verbrugge [69] present a practical implementation of this
algorithm that overcomes the limitations of whole-program inlining and exhaustive cloning.
With those changes, Lin and Verbrugge can apply MHP to moderate size programs.

Barik [14] describes a different, scalable context and flow-sensitive MHP analysis for Java.
In this work, Barik introduces a thread creation tree that distinguishes threads by their creation
site. The thread creation tree captures start and join interactions among threads and allows the
analysis to deduce some limited ordering information between threads.

In [4], Agarwal, Barik, and Sarkar adapt previous MHP analyses, which were designed
for task- and thread-based parallelism found in Ada and Java, to the hither-level structured
concurrency constructs provided by X10. Because of the restricted parallelism of X10, their
approach can be based on simple path traversals in the program structure tree and does not
require any points-to analysis for task objects. However, this MPH analysis is only applicable
to languages that adopt the core concepts of places, async, finish, and atomic sections from the
X10 programming model.

In general, the goals of MHP analysis and the schedule analysis presented in this disserta-
tion are similar. However, instead of focussing on parallelism between individual statements
or program operations, the schedule analysis focusses on parallelism (and ordering) between
whole tasks. The information whether two statements s and t may be executed in parallel is
then computed on demand by a simple reachability analysis that checks whether s and t can
be reached by two parallel tasks A and B. Focussing on tasks and task ordering instead of
individual statements allows the analysis to scale even to large programs.

The schedule analysis itself does not take any information about low-level synchronization
into account, which is a big part of all the discussed MHP algorithms. Without synchronization
information, however, a compiler may miss important optimization opportunities for programs
where happens-before ordering of tasks is not sufficient and locks must be used. Therefore, it
may be beneficial to combine a schedule analysis with a MHP analysis. In this approach, the
MHP analysis is used to compute low-level synchronization information only between poten-
tially parallel tasks, as determined by the schedule analysis.
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Program dependence graphs and parallel program graphs. Program dependence graphs
(PDGs) [40] can be used to analyze the intrinsic parallelism in a sequential program. A PDG
makes explicit both the data and control dependences for each operation in a program. However,
PDGs are designed for sequential programs and cannot represent explicitly parallel programs.
Sarkar [103] overcomes this limitation by introducing parallel program graphs (PPGs) as a gen-
eral parallel program representation for analysis and optimization of programs with structured
parallelism. PPGs are comprised of parallel control flow edges and synchronization edges.
Ferrante et al. [39] introduce a similar data structure called parallel flow graphs (PFGs) and
describe a data-flow analysis that can be used for optimizing programs with structured paral-
lelism. All of the above graph-based analyses focus on structured parallelism with lexically
scoped fork/join-style concurrency constructs.

Barrier synchronization. Concurrency analysis is a static analysis technique that determines
whether two operations in a shared memory program may be executed in parallel by different
tasks. For programming models that use low-level synchronization such as locks, concurrency
analysis must account for the partial ordering of statements imposed by barriers. In [118] and
[119], Zhang et al. present techniques for analyzing barrier synchronization in programs with
unnamed and possibly textually unaligned barriers. Barriers structure the execution of parallel
regions into a series of synchronized execution phases such that threads synchronize on barriers
only at the beginning and at the end of each phase. Statements from different execution phases
cannot execute concurrently and thus define ordering relationships among statements. Zhang
et al. assume a fork/join-style concurrency model such as the model provided by OpenMP
and cannot handle more flexible models such as threads or the task model presented in this
dissertation. However, barrier synchronization may provide the basis for transforming an input
program that uses barriers, such as the sor example from Figure 3.1, to a program that uses
explicit →-statements, such as the transformed example from Figure 3.3.

Delay set analysis. Delay set analysis computes a delay set, i.e. a set of program edges x→y
between memory accesses x and y such that y must be delayed until x has completed. If x→y
is in the delay set then x and y may not be re-ordered under a sequentially consistent memory
model because the effect of the re-ordering may be observed by a parallel task. Current delay-
set analyses, such as the ones presented in [104] and [108], suffer from the unstructured nature
of threads that results in imprecisions when analyzing thread interaction that is not local to
a single method. Schedule analysis could be used to improve the precision of the delay set
analysis. Most optimizations presented in this dissertation combine task-order information with
points-to information to find possible program-point interferences. This combination is a simple
but conservative approximation of the critical cycle detection of a delay-set analysis.

Interval analysis and loop hierarchy analysis. Section 4.2.2 presents a data-flow approach
to extract the loop-contextualized task-variable ordering graph from a task method. The effect
of loops on the task scheduling and task ordering and the loop nesting is tracked through the
LoopCtxts(n)-part of the flow value. This technique is an imperative approach to the analysis
of control flow containing nested loops. Another way to compute the same information could
be to use a more declarative technique: Given a separate analysis that takes a task method and
computes the structural nesting of loops, a declarative approach may allow for a more direct
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classification of →-statements. For example, knowing that schedule-site a is outside any loop
and schedule-site b together with the statement a→b is inside a single loop �, we could directly
deduce that [{ε},a]→ [{�,ε},b]. This fact can be expressed in a simple rule without the need
for a full-fledged iterative data-flow analysis. A declarative approach—based on a separate
loop analysis—may be beneficial because the evaluation in Chapter 5.3 showed a practical
occurrence of a theoretical inefficiency in the presented data-flow analysis for the case where a
task method contains many nested loops.

Interval analysis (and the related structural analysis) [87, pp.197–215] is a technique to
divide up a control-flow graph into regions representing the nesting of control structures such
as loops and conditionals. The result of an interval analysis is a control tree where leaves
represent regions of the control-flow graph, intermediate nodes hold the classification of the
control-structure, and edges represent the nesting of the control structures. Another possible
data structure called loop-level hierarchy, which is similar to control trees but focusses on loops,
is presented in [95].

4.5 Summary

This chapter introduces schedule analysis as one approach to gather task-order information
from the program code without programmer intervention. The schedule analysis makes use of
a standard points-to analysis and its associated call graph. The points-to analysis provides alias
information information about possible task objects whereas the call graph defines possible
execution paths for each task. An escape analysis can be added to improve the precision of later
optimizations.

Given the result of the points-to analysis, the schedule analysis proceeds in two phases.
First it extracts a loop-contextualized task-variable ordering graph from the code of each task
method and uses this graph to compute an ordering relation for all pairs of task variables of
the task method. In the second phase, the analysis computes the relation parallel(A,B) for
the whole program by looking for task objects that may be scheduled without direct or indirect
ordering. The schedule analysis was specialized to handle the important now happens-before
later pattern with higher precision.





5
Case study 1: Sequentially consistent Java

From the beginning, Java was designed to be a safe and secure language that supports running
untrusted code as part of trusted applications. As a multi-threaded language, Java therefore
must prevent undefined behavior even for programs that are not correctly synchronized. The
Java Memory Model [75] formally defines the basic semantics of shared variables and specifies
what values a read of a shared memory location is allowed to return.

For correctly synchronized code, that is, programs without data races, the Java Memory
Model guarantees sequential consistency. In a sequentially consistent system, all threads see
write operations to the same memory location in the same order and the operations of each indi-
vidual thread appear in the order specified by its program text. Because each thread must behave
according to its program text, it is relatively easy for programmers to reason about sequentially
consistent programs. However, many hardware and compiler optimizations commonly used in
uniprocessors, such as register promotion, common subexpression elimination, and reordering,
can potentially violate sequential consistency: the effects of an optimization in one thread may
be observed by another thread and the program-text order can appear to be violated.

The Java Memory Model tries to minimize the possibly negative performance impact of
strict memory models by relaxing the constraints on the order of shared memory accesses. This
increases the opportunities for the compiler to apply well-known uniprocessor optimizations.
However, a relaxed memory model not only makes it harder for programmers to reason about
their applications; it also turned out to be extremely difficult to implement correctly [113].

This chapter presents an optimizing compiler for a Java version with a sequentially consis-
tent memory model. The compiler exploits task-ordering information gathered from the pro-
gram to compute whether two tasks are potentially executed in parallel or whether they are
ordered by happens-before relations. This ordering information helps the compiler to decide
for each program point whether a change in this point may be observed by a parallel task (and
thus violate sequential consistency) or not. Because the compiler is a bytecode-to-bytecode
translator, the programs can run on an unmodified standard Java Virtual Machine.

5.1 Sequential consistency

A memory consistency model defines the semantics of shared memory in a concurrent program
by specifying the order in which memory operations are visible to other tasks. Under sequential
consistency, all tasks must observe the same ordering of memory operations and the memory
operations must be consistent with the order specified by the program.

A simple execution semantics for a sequentially consistent system is shown in Figure 5.1

75
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Execution 
Manager

T0

T1
T2

T4

T3

Main Memory

Figure 5.1: Execution semantics for sequentially consistent programs.

Initially: flag0 == flag1 == 0

Task 0
1 flag0 = 1;
2 r0 = flag1;
3 if(r0 == 0) {
4 //critical section
5 }

Task 1
flag1 = 1;
r1 = flag0;
if(r1 == 0) {
//critical section

}

Figure 5.2: Dekker’s mutual exclusion algorithm for two tasks. flag0 and flag1 are shared
variables; r0 and r1 are thread-local registers.

and can be defined as follows: In each round, a central execution manager chooses one of the
executing tasks. This chosen task performs the next single step in its execution specified by
its program order where all reads and writes of shared objects are directly preformed on the
main memory. This process of choosing a task and executing a single step is repeated until the
program terminates.

This lock-step semantics results in a serialization of all accesses to shared memory where a
read to a memory address is guaranteed to retrieve the value stored by the last write to the same
address and where all tasks agree on the same serialization of the memory accesses.

As an example for how a relaxed memory model may result in surprising behavior, consider
the implementation of Dekker’s mutual exclusion algorithm [71, 33, 3] for two tasks shown in
Figure 5.2. Dekker’s algorithm is designed to allow at most one task to enter the critical section
on line 4.

Initially, flags flag0 and flag1 are set to 0. A task signals its intention to enter the critical
section by setting its corresponding flag (flag0 or flag1 respectively) on line 1. Before task 0
enters the critical section, it checks the other task’s flag on lines 2 and 3 to see whether task 1
intends to enter the critical section, too. If flag1 is 0, task 1 has no intention to enter and it is
save for task 0 to proceed.

The correctness condition for this algorithm states that when both tasks reach line 3, it is not
possible that registers r0 and r1 are both 0. If both registers were 0, both tasks could enter the
critical section at the same time.
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Execution 1
//Thread 0 Thread 1
flag0 = 1;
r0 = flag1;

flag1 = 1;
r1 = flag0;

//r0 == 0
//r1 == 1

Execution 2
//Thread 0 Thread 1

flag1 = 1;
r1 = flag0;

flag0 = 1;
r0 = flag1;

//r0 == 1
//r1 == 0

Execution 3
//Thread 0 Thread 1
flag0 = 1;

flag1 = 1;

r0 = flag1;
r1 = flag0;

\\r0 == 1
\\r1 == 1

Figure 5.3: Some executions of Dekker’s algorithm from Figure 5.2

Even in this small example, many possible interleavings exist of how the two tasks can
execute their individual steps. Figure 5.3 presents three such possible interleavings and the
final results of the non-shared registers r0 and r1. Although many other execution histories
are possible, Dekker’s algorithm assures that r0 and r1 can never both be 0 at the end of the
execution, which would violate the correctness condition stated above.1

Intuitively, correctness can be proven by reasoning about the program code: any execution
must start with assigning 1 to either flag0 or flag1 on line 1. Therefore, at least one later read
of the flags on line 2 will see the 1 and it is not possible that r0 == r1 == 0.

However, this proof is valid only if the compiler and runtime system enforce a strong mem-
ory model such as sequential consistency. In a relaxed memory model such as the Java Memory
Model, for example, the compiler may choose to reorder the two independent memory accesses
on lines 1 and 2 (setting the task’s own flag to 1 and reading the value of the sibling task’s flag).
Scheduling the read on line 2 early can be beneficial because issuing loads early tends to hide
the load latency [2]. In addition, modern processors improve their performance through mech-
anisms such as caches and store buffers, which can effectively reorder the instructions issued
by a task without the compiler being involved. When the instructions on lines 1 and 2 are re-
ordered by the compiler or the hardware, the outcome r0 == r1 == 0 is possible, unexpectedly
resulting in an incorrect program where both tasks may enter the critical section concurrently.

In general, instruction reordering by the compiler or the hardware breaks the sequential con-
sistent semantics of the program. Without further information, optimizations in a sequentially
consistent system must conservatively assume that the order of memory accesses must not be
relaxed. While some standard optimizations, such as constant propagation or dead code elim-
ination, can be allowed in a sequentially consistent system, many other optimizations must be
weakened or cannot be used at all if sequential consistency should be preserved [78]. If task-
schedule information is available, however, the compiler can identify parts of the program that
at runtime will not conflict with any parallel task. Those parts can be optimized as if they were
executed in a single-threaded context without violating sequential consistency.

1In Execution 3 of Figure 5.3 both r0 and r1 are 1 and the program deadlocks. Dekker’s algorithm in the
presented form is therefore not a practical implementation but merely an illustrative example.
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Initially: X == Y == 0

Original Code
Task 0

1 r0 = X;
2 r1 = X;
3 if(r0 == r1)
4 Y = 1;

Task 1
r2 = Y;
X = r2;

After Compiler Transformation
Task 0

1 Y = 1;
2 r0 = X;
3 r1 = r0;
4 if(true);

Task 1
r2 = Y;
X = r2;

Is r0 == r1 == r2 == 1 allowed?

Figure 5.4: Redundant read elimination is permitted by the JMM but violates sequential consis-
tency (example adapted from [2]).

5.2 An optimizing compiler for sequentially consistent Java

This section presents the implementation of an optimizing compiler for a sequentially consistent
version of Java. The compiler combines a schedule analysis with a pointer analysis to find those
parts in the code that can be optimized under the rules of the more relaxed Java Memory Model
(JMM) while preserving sequential consistency semantics.

The JMM is a memory model with relaxed ordering constraints that is weaker than sequen-
tial consistency. The main goal of the JMM designers was to provide a model that unambigu-
ously specifies the semantics of multithreaded Java programs while at the same time allowing
many of the standard compiler optimizations [75]. The JMM guarantees sequential consistency
only for correctly synchronized programs, that is, programs that are data-race free. For pro-
grams with data-races, however, the JMM sacrifices the benefits of sequential consistency in
favor of more compiler optimizations—and therefore better performance.

Figure 5.4 illustrates the optimization opportunities the JMM provides over sequential con-
sistency. Under sequential consistency, the outcome r0 == r1 == r2 == 1 would be prohib-
ited because it violates causality: In order to set r2 == 1 the write Y = 1 on line 4 by task 0
must have happened before task 1 reads Y into r2 on line 1. However, this implies that the value
of X is still the initial 0 because X is only written by task 1 on the next line 2. Therefore, the
earlier reads of X into r0 and r1 must have returned 0.

For this example, the JMM allows the compiler to apply common optimizations such as
redundant read elimination. This is, because neither X nor Y are flagged as volatile and the
program does not contain any other synchronization. When performing a redundant read elimi-
nation optimization, the compiler eliminates the second read of X on line 2 by replacing r1 = X
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with r1 = r0, as shown in the lower half of Figure 5.4. This allows the compiler to deduce that
on line 3, r0 == r1 is always true. In a subsequent step, the compiler may therefore replace
the tautology if(r0 == r1) on line 3 with a simple if(true). Because the write to Y on line 4
is now unconditional and because writing Y is independent from the read of X, the compiler can
finally move the write to Y all the way up before the read of X. This results in the transformed
version shown in the lower half of Figure 5.4.

In the transformed program, the outcome r0 == r1 == r2 == 1 is justifiable: task 0 first
sets Y = 1 before task 1 loads this value into r2 and propagates it to X from where task 0
reads it into r0 and r1. This outcome appears to require a self-justifying speculative write of
Y but it must be allowed if compilers are to perform the common redundant read elimination
optimization.

Because in this example, the redundant load elimination together with the subsequent code
transformations violates sequential consistency, an optimizing compiler for a sequentially con-
sistent version of Java must not perform this optimization but keep the original program. How-
ever, the compiler can safely eliminate redundant reads that are either executed in a single-
threaded setting or that do not access memory that may be accessed by any parallel task in
parallel without violating sequential consistency.

5.2.1 Transforming Java into sequentially consistent Java

In the example from Figure 5.4 a classic redundant load elimination optimization classifies the
two reads of X on lines 1 and 2 as being redundant because they access the same memory
address and the memory address is not changed between the two reads. In a multi-threaded
setting, however, this is only true if no other task writes to X in between the two reads.

A sequentially consistent language and runtime system must not only prevent reordering of
reads and writes to shared memory; it must also guarantee that every single read of a shared
memory address, even redundant ones, actually return the correct up-to-date value from main
memory.

For a sequentially consistent input language, sequential consistency can be achieved on the
hardware level through inserting memory fences. However the Java language, does not by de-
fault guarantee sequential consistency for programs with data races. A compiler can transform
an arbitrary Java program into a sequentially consistent Java program by exploiting the JMM
semantics for volatile memory accesses.

A Java program that does not use any arrays can be made trivially sequentially consistent
by simply declaring every field of every class to be volatile. The JMM specifies that “[. . . ] a
read to a volatile variable v returns the value of the write to v that is ordered last before the read
by the synchronization order” [75]. Because reads and writes to volatile variables are defined
as synchronization actions, the memory accesses of a program with only volatile fields will
be globally ordered, resulting in a sequentially consistent program.

There are two problems with this approach, however. First, by marking whole fields as
volatile the opportunities for compiler optimizations are greatly reduced. If one part of the
program accesses a field concurrently but other parts access the field in a single-threaded con-
text, or if all accesses to this field are correctly synchronized by locks, marking the whole field
as volatile unnecessarily constrains the non-concurrent accesses. The second problem is that
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Figure 5.5: Phases of the optimizing compiler for sequentially consistent Java.

in Java defining an array to be volatile only affects the reference to the array but does not give
any guarantees for accessing elements inside the array.

Therefore, instead of marking memory locations (fields) to be volatile, as in standard Java,
the presented sequentially consistent version of Java makes the individual memory access opera-
tions volatile. It does so by rewriting all memory access bytecodes—reads/writes to object fields
as well as reads/writes of array elements—into calls to sun.misc.Unsafe.getXYZVolatile()
and sun.misc.Unsafe.putXYZVolatile()2. The volatile getters and setters in the class Unsafe
represent compiler intrinsics that guarantee that the memory accesses follow the Java volatile
semantics thus creating happens-before relations between concurrent reads and writes.

5.2.2 Optimizing away volatile memory accesses

Naïvely rewriting all memory accesses into their volatile counterparts is an overly conservative
transformation resulting in unnecessary additional overhead. The goal of the optimization is to
reduce the number of memory access bytecodes that must be rewritten. This not only removes
the overhead directly associated with the required memory fences but also increases the opti-
mization opportunities for the just-in-time compiler when the program is executed by allowing
advanced optimizations such as redundant load elimination or instruction reordering.

2XYZ is a placeholder for the various basic Java types such as int, float, or Object.
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CONFLICTING
v1 MAY POINT TO Obj
v2 MAY POINT TO Obj

Obj MAY ESCAPE A and B
parallel(A, B)

conflicting(v1,A, v2, B)

RW–CONFLICT
BCR MAY READ v1. f in A

BCW MAY WRITE v2. f in B
conflicting(v1,A, v2, B)

readNeedsVolatile(BCR)

WR-WW–CONFLICT
BCW MAY WRITE v1. f in A
BCX MAY ACCESS v2. f in B

conflicting(v1,A, v2, B)
writeNeedsVolatile(BCW )

Figure 5.6: Computing required volatile memory accesses for sequentially consistent Java.
Variable f ranges over all fields. For array accesses, f is a synthetic field elements representing
the contents of the array.

The compiler for our sequentially consistent version of Java is realized as a bytecode-to-
bytecode translator. The three main phases of the compiler are depicted in Figure 5.5. In the
first phase, the compiler removes all programmer-provided volatile annotations on fields in
the original program. Because the compiled program will be sequentially consistent, it is not
necessary to manually declare a field to be volatile.3 The compiler then performs the points-
to analysis, escape analysis, and schedule analysis that are needed by the optimization. In the
third phase, the compiler transforms all conflicting bytecodes that read or write fields and access
array elements to be volatile.

The third phase uses the rules depicted in Figure 5.6 to decide whether a bytecode may
conflict with another program point. The RW–CONFLICT and WR-WW–CONFLICT rules are
variations of the GENERIC-OPT optimization rule from Chapter 4 specialized for the exact
semantics required by sequential consistency.

Because parallel reads are allowed under sequential consistency, the RW–CONFLICT rule
only adds those read bytecodes BCR to the readNeedsVolatile relation that may conflict with a
concurrent write of the same field in the same object. The rule WR-WW–CONFLICT on the
other hand adds all write bytecodes BCW to the writeNeedsVolatile relation that may conflict
with any concurrent read or write bytecode BCX accessing the same field f in the same object
Ob j.

5.3 Evaluation

We evaluate the performance and effectiveness of the schedule analysis for the sequentially
consistent Java compiler. We use several multi-threaded benchmark programs taken from three
different benchmark suites to measure the cost and precision of the schedule analysis and com-
pare the runtime overhead of an unoptimized sequentially consistent version and the optimized
versions.

3As described in Section 7.5, volatile annotations on a field may be used to check the programmer’s aware-
ness that the field is actually shared. In a sequentially consistent Java, however, volatile declarations do not
have any semantic effect.
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5.3.1 Setup of the experiment

All experiments were run on a machine equipped with a Intel Core 2 Duo 2.8GHz and 4Gb of
RAM. The compiler implementation is single threaded, however, and therefore only one core is
used during the compilation.

The first six benchmarks are taken from [111]. sor (successive over-relaxation over a 2D
grid), and tsp (traveling salesman problem) are data- and task-parallel applications with data
access patterns of scientific codes; threads are synchronized in a fork/join style based on barriers
instead of locks. hedc is a warehouse for scientific astrophysics data that implements a meta
crawler for searching multiple Internet archives in parallel. The individual queries are handled
by reusable worker threads. The programs mol(dyn), ray(tracer), monte(carlo) are multi-
threaded numeric applications taken from the Java Grande benchmarks [106].

The last five benchmarks are part of the Lonestar 2.0 benchmark suite, a collection of
widely-used real-world sequential applications that exhibit irregular behavior [57]. The bench-
marks are parallelized using the Galois runtime system [58]. The Galois runtime provides
a framework for parallelizing irregular algorithms that are organized around object-oriented
pointer-based data structures such as graphs and trees.

Barnes-Hut (barnes) simulates the gravitational forces acting on a galactic cluster. The
Boruvka’s algorithm (boruv) computes a minimal spanning tree of an edge-weighted undirected
graph. clust is an implementation of a well-known data-mining algorithm called Agglomera-
tive Clustering. Delaunay triangulation d-tri and Delaunay mesh refinement d-ref compute
triangulations of sets of points such that each triangle satisfies certain quality constraints.

For most cases, adapting the benchmarks to the task model was straight forward and almost
purely syntactical. Only the tsp benchmark required some more refactoring of the original
algorithm because the original code was not written in a way that fits the task model very well.

5.3.2 Benchmark characteristics and analysis performance

Table 5.1 gives an overview of the size of the individual benchmarks as well as the perfor-
mance of the schedule analysis. The reported numbers of application classes for the Lonestar
benchmarks include the classes of the Galois runtime system.

For most cases, the schedule analysis takes only a small percentage of the overall compila-
tion time, between 1% and 11%, with the moldyn benchmark being a notable exception.

The data-flow approach from Section 4.2.2 for extracting the loop-contextualized task-
variable ordering graph from a given task method is sensitive to the number and nesting of
back-edges in the control-flow graph. moldyn is implemented in a way such that almost all
task objects are scheduled inside a single method. This method contains multiple nested loops,
in each of which task objects are scheduled and happens-before relations are created, which
causes the data-flow computation to converge only slowly. Therefore, about 98% of the time
spent during schedule analysis is used for extracting the information from the bytecode and only
about 2% is spent for actually analyzing the schedule. This behavior seems to be a pathological
case that is related to the way this particular benchmark has been implemented; however, it also
shows that further investigation in a more performant schedule extraction with better worst-case
behavior is required.
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Figure 5.7: Relative number of instrumented field and array accesses.

5.3.3 Precision of the analysis

For evaluating the effects of each individual analysis on the overall result, we have compiled
the benchmarks in three different configurations:

• In the None configuration, the compiler has no advanced analysis information and must
instrument all field and array accesses in order to guarantee sequential consistency.

• The second configuration ESC uses an escape analysis plus a points-to analysis to decide
whether two memory accesses executed by different tasks may require memory barriers.

• The third configuration ESC+SA adds scheduling information to the points-to analysis and
escape analysis to distinguish between accesses that are ordered and accesses that may
happen in parallel.

Figure 5.7 reports the precision of the different configurations in terms of the relative num-
ber of memory accesses that were instrumented. For the None configuration, 100% of the mem-
ory access bytecodes must be instrumented, because the compiler must conservatively insert
memory barriers for each access.

If the compiler has escape information available (the ESC configuration), it can reduce the
number of bytecodes that must be instrumented to about 60%.

For all benchmarks, adding the schedule analysis (the ESC+SA configuration) the number
of instrumentations needed can be further significantly reduced. A large number of the instru-
mentations that are removed are located in single-threaded code that is executed during setup
and tear-down of the applications and therefore have only relatively little effect on the overall
runtime. However, in many cases the schedule analysis is able to identify and remove instru-
mentations in hot paths of the programs which can have a significant impact on the runtime
overhead as presented in the next section.

In all benchmarks, the initial data structures are set up during the start phase and then passed
to the subtasks. The subtasks perform their computation before a single-threaded teardown
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Figure 5.8: Runtime overhead of unoptimized and optimized sequential consistency compared
to Java’s relaxed memory model.

phase verifies the results and reports to the user. The escape analysis flags all objects that
are passed to and from the parallel tasks as ‘escaping’. Therefore, the compiler configuration
that only uses escape information falsely identifies many memory accesses as conflicting. With
scheduling information, however, the compiler can often find that shared objects are only written
during the setup phase and only read in parallel.

5.3.4 Runtime overhead of sequentially consistent Java

Figure 5.8 shows the overhead of the benchmarks compiled with the None, ESC, and ESC+SA
configurations. The baseline of this comparison is the runtime of the original version that uses
the relaxed Java Memory Model.

For four out of the eleven benchmarks the fully-optimized sequentially consistent Java is
within 2% of the original version whereas the configurations with no optimizations or only
escape analysis show overheads between 10% and 50%. In the seven remaining cases the over-
head of the fully optimized version was under 32% with an overall average overhead of 11%.

The sor and ray benchmarks show an exceptionally bad behavior for the sequentially con-
sistent versions. The reason for this is that the authors of those benchmarks chose to never use
any local variables but always access fields directly. However, instrumenting accesses inside hot
loops hurt the performance especially. If the parallel tasks work on their own copies of the data
the schedule analysis with the escape analysis can deduce that there are only few conflicting
memory accesses and thus restore the performance of the original program.

The performance of hedc is mainly constrained by input/output operations which hides the
overhead of sequential consistency even in the unoptimized version.

When looking at the runtime overhead it can be seen that the improvements for the Lones-
tar benchmarks are significantly smaller (about 5%-10% over the none configuration) than the
improvements seen in the other benchmarks. This is, because most of the used Galois methods
cannot be optimized. However, there are—often significant—sequential phases other than the
setup/teardown phases that can be optimized. In barn, for example, each time step ends with a
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sequential Advance() task that advances all bodies by directly accessing each body’s fields. The
optimization removes the fences around all those field accesses (6 field reads + 6 field writes
for each body in each time step) which accounts for most of the improvement seen in the barn
benchmark.

5.4 Related work

There are two general directions of research to improve the performance of sequential consis-
tency. Systems with hardware support and pure software implementations.

Hardware based. BulkSC [25] is a hardware implementation that enforces sequential con-
sistency through an arbiter that determines whether groups of memory operations can be com-
mitted. Ahn et al. [6] presents BulkCompiler, a hardware-compiler interface that works with
group-committing hardware to provide a whole-system high-performance sequentially consis-
tent platform. [71] describe hardware supported conditional memory fences that decide dy-
namically if there is a need to stall at each fence. The conditional fence mechanism relies on
compiler inserted fence instructions to achieve sequential consistency but requires an additional
small hardware buffer.

Software based. Delay-set analysis, first presented by Shasha and Snir [104], computes a
minimal set of delays that guarantees sequential consistency. Those delays are enforced by
inserting memory fences. By exploiting the ordering constraints of the hardware consistency
model and the property of fence and synchronization operations, Lee and Padua [66] were able
to optimize the number of fence instructions that the compiler must insert. In the Pensieve
project, Fang et al. [36] developed various additional fence insertion and optimization algo-
rithms. In [108] Sura et al. combine multiple analyses, namely escape, thread structure, and
delay-set analysis, into a single compiler for sequentially consistent Java. Their thread structure
analysis tries to identify simple cases where tasks are arranged in trivial fork/join patterns inside
a single method.

In [67], Lee and Midkiff present a two-phase offline/online interprocedural and inter-task
escape analysis. By performing an offline pre-analysis followed by a dynamic online analysis
that integrates offline results with dynamic information, the whole-program escape analysis be-
comes performant enough to be done at runtime by the just-in-time compiler (JIT). This precise
online whole-program escape analysis enables the JIT compiler to compile Java programs on
the fly under a sequentially consistent memory model. While our sequentially consistent ver-
sion of Java must be compiled offline, the approach presented by Lee and Midkiff does not have
task-order information available and therefore may be less precise than it could be. If an online
schedule analysis were available, both analyses could be combined in a single JIT, however,
resulting in an online version of the sequentially consistent Java presented in this chapter.

The above software based implementations target programs with traditional Java threads.
The unstructured nature of threads, however, makes it difficult to gather good information about
the relative order in which threads execute. In contrast, the schedule analysis presented in this
paper can analyze task ordering across method boundaries as well as recursive task creation.
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Many of the supporting analyses (especially delay-set analysis) presented in the related work,
however, can be combined with schedule analysis to improve the overall analysis precision.

Software based with hardware support. In [78], Marino et al. present their observation
that a large class of traditional compiler optimizations that are crucial for performance either
already preserve sequential consistency or can be modified to preserve sequential consistency
while retaining much of their effectiveness. The overhead of their compiler mainly comes from
its inability to aggressively perform a certain class of optimizations that perform eager loading.
They propose to expose a hardware speculation mechanism to the compiler that can efficiently
detect whether a particular variable has changed its value since last read. Marino et al. conclude
that before resorting to relaxing the memory model other ways for improving the performance
of sequential-consistency-preserving compilers should be explored.

Dynamic memory model exceptions. A memory model exception is an exception that is
thrown if the runtime detects possible data races. If a program executes without throwing this
exception then it is guaranteed that the execution was sequentially consistent. If a program
does throw a memory model exception then it is guaranteed that the execution had a data race.
Treating concurrency errors as exceptions with fail-stop behavior is simple for programmers
to understand while providing precise semantics and supporting many common compiler opti-
mizations.

In [77], Marino et al. present a memory model that guarantees that if sequential consis-
tency is violated in an execution of a program, then the execution eventually terminates with a
memory model exception. This approach uses a combination between compiler and hardware
mechanisms to detect sequential consistency violations between single-entry, multiple-exit por-
tions of the program called regions. Lucia et al. [74] propose a similar hardware-supported
exception mechanism but ensure atomicity of synchronization-free regions, which is a stronger
property than sequential consistency.

Memory model exceptions are inherently a dynamic mechanism to give racy programs a
precise semantics without the complexity of relaxed memory models. Task-order information
may be used by the compiler, however, to statically identify and remove unnecessary data race
checks.

Nested synchronization. The optimizing compiler presented in this chapter only uses the
schedule analysis data in conjunction with the points-to and escape analysis information. How-
ever, there are other possible opportunities for optimizations.

The presented compiler, for example, does not take Java synchronization into account. If the
compiler can deduce, for example, that all accesses to an object are always guarded by the same
lock it could make those accesses non-volatile without violating sequential consistency. Such
an optimization would require an analysis of the synchronization statements in the program
with an approach such as [7] or [118, 119].



88 CHAPTER 5. CASE STUDY 1: SEQUENTIALLY CONSISTENT JAVA

5.5 Summary

Sequential consistency provides stronger and more useful guarantees to the programmer than
the more relaxed Java Memory Model. Giving stronger guarantees, however, also prevents
many useful compiler and hardware optimizations that may otherwise violate the sequential
consistency semantics.

The compiler presented in this chapter transforms a Java program into a sequentially consis-
tent Java program by forcing accesses to fields and array elements to follow the Java volatile
semantics. The compiler optimizes the program by rewriting only those accesses that may ac-
tually result in read-write or write-write conflicts. The experimental data shows that adding
a schedule analysis to the compiler significantly improves the performance of the compiled
program. As a result, the overhead of sequential consistency is reduced from 136% in the
unoptimized version to 11% on average as compared to a hand-optimized version.
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Case study 2: Dynamic fractional

permissions

With the rise of multithreaded programming, the number of problems related to concurrency
is constantly growing [73]. One prevalent type of bugs found in concurrent systems are data
races. A data race occurs when two concurrent access to the same memory location are not
ordered by happens-before relations and at least one of the accesses is a write. In practice, there
are three different approaches to design data-race free programs:

Language-enforced data-race freedom: Some languages guarantee data-race freedom
through their type systems [81, 20]. From a high-level, the programmer provides program anno-
tations that describe how data is shared and accessed by concurrent tasks. The language’s type
system uses the annotations to prove that accesses to shared memory are ordered or fails other-
wise. In recent years, much research also went into transactional memory [86, 48, 1]. Transac-
tional memory allows programmers to specify code regions that should be atomic; an accom-
panying runtime system implemented in hard- and/or software protects the accessed memory
from concurrent accesses thus preventing data races.

Static verification and model checking: Static verification and model checking of concur-
rent programs are approaches that—conceptually—exhaustively explore the whole state space
of the program to rule out potential data races [88, 96]. The major challenge of model checking
techniques is the state space explosion: the number of states increases exponentially with the
number of possible task interleavings. Numerous approaches exist for reducing the state space
that must be effectively explored for guaranteeing data-race freedom.

Dynamic detection: Systems for dynamic data-race detection aim at finding data-races when
they happen during program execution. This can be done online, that is, during program ex-
ecution, or offline, by analyzing a pre-recorded program trace. In general, dynamic detection
cannot guarantee the absence of data-races for all possible executions; rather, it focusses on
data-races in the observed execution traces. Dynamic data-race detection systems further fall
into two general categories: Precise and imprecise systems [41]. While precise race detectors
never report false positives, they can impose a significant runtime overhead due to the addi-
tional bookkeeping they require. Imprecise race detectors increase the performance by giving
up precision but—as a result—may report false alarms on data-race free programs.

89
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This chapter introduces a dynamic variant of fractional permissions [20] in which the pro-
grammer explicitly manages task-access permissions for objects. In this system, each object is
associated with an access control list (ACL) that contains all the tasks that are allowed to access
the object.

A task is allowed to write an object if it’s the only task in the object’s ACL and therefore has
full permission. In order for a task to read the object, however, it is enough if the task is one of
several tasks in the object’s ACL.

Each task in an object’s ACL conceptually owns a fraction of the full access permission
corresponding to the total number of tasks in the ACL. The system can detect data-races by
checking the current task’s access permissions on every read and write operation. By imposing
restrictions on when and how tasks are allowed to modify an object’s ACL, the system further
forces the programmer to follow a structured access-right management regime and prevents
privilege escalation where a task A with low privileges grants another task B higher access
privileges.

There are two factors that result in a relatively large overhead for a naïve implementation
of the dynamic fractional permissions system. First, the memory for storing the ACLs for each
object have a negative impact on the memory footprint, memory allocation, cache behavior, and
garbage collection. And second, checking whether a task has the correct access rights slows
down every single field-read and -write operation.

Because of the imposed runtime overhead, dynamic fractional permissions are impractical
for real-world application without optimizations. This chapter presents an optimizing compiler
that significantly reduces the runtime overhead by not allocating ACLs for objects that are not
shared as well as removing access checks on read and write operations that are not conflicting.

Section 6.1 describes the dynamic fractional permission system and its implementation. The
example presented in Section 6.2 illustrates how dynamic fractional permissions can be used to
dynamically enforce a data access policy in a MapReduce(). The compiler optimizations are
presented in Section 6.3 and evaluated in Section 6.4.

6.1 Dynamic fractional permissions

This section describes the three components of the dynamic fractional permission system: ac-
cess control lists (ACLs), permissions, and permission management operations.

6.1.1 Access control lists and permissions

At runtime, each object o is associated with an access control list (ACL). We define a function
ACL(o) to return the ACL of object o. The ACL is the set of all task objects that share the full
access permission for the object. The fraction Frac(o,A) of the full permission that a task A
has for an object o directly correlates to the number of tasks that are in o’s ACL. Frac(o,A) is
defined as:
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Frac(o,A) ∶=
���������

1�ACL(o)� if A ∈ ACL(o)
0 else.

If A is in o’s ACL, it shares the permission equally with all other tasks in o’s ACL. If A is
not in o’s ACL, however, A’s fraction of o’s access permission is 0.

The system distinguishes the following three types of permissions, depending on the fraction
size:

Write Permission: A taskA has write permission (or ‘full’ permission) for object o if it is the
only task in o’s ACL. We define the expression isWritable(o,A) to be true if Frac(o,A) = 1.
Because A has the full permission, no other task can gain access rights for o. Therefore A
can safely write the fields of o without risking data-races. Certain permission management
operations require the performing task to have full permission on the object.

Read Permission: A task A has read permission (or ‘partial’ permission) to access object
o if A is an element in the ACL. We define the expression isReadable(o,A) to be true if
Frac(o,A) < 1. A read permission for object o, as the name implies, allows a task A to read
the fields of o but not write them. A task A with read permission can grant read permission on
o to another task B by adding B to o’s ACL. This reduces the absolute value of the permission
fraction that the tasks in o’s ACL own. However, adding B does not change the access rights a
third task C may have on o.

No Permission: A task A has no permission for object o if it is not an element in o’s ACL.
We define the expression noAccess(o,A) to be true if Frac(o,A) = 0. It is legal for A to own
a reference to o but A is not allowed to read or write o’s fields nor can A change o’s ACL in any
way.

To enforce the dynamic data-race detection, the compiler automatically inserts assertions be-
fore all field accesses that check the current task’s read and write permissions. If the check fails
the program is aborted and an error message is shown, containing the offending program point,
the required permission, and the actual ACL. The detailed information in the error message
together with the early program termination helps the programmer to pinpoint the data-race.

6.1.2 Permission management operations

The dynamic fractional permissions system provides a set of operations that allow a task A to
manage the permissions for an object o. Depending on the operation A wants to perform it
must either have the full permission for o or a fractional permission. This section informally
describes the management operations and their semantics.

Split Permission: The most common operation for managing permissions for an object o is
to split the permission and share it between the current task A and a second task B. In order
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to split the permission, the issuing task A must have at least read permission for o; that is,
isReadable(o,A). Otherwise, the program is aborted with an appropriate error message. In
terms of o’s ACL, the operation o.splitPermission(B) checks whether isReadable(o, now)
and, if true, simply adds B to the ACL.1

Yield permission: A task A can transfer (yield) its permission for an object o to another task
B. After the yield, task B has the same permission (none, read, or write) on o as A had before
the yield. In any case, after the yield, the issuing task A has no permission on o. In terms of
o’s ACL, the operation o.yieldPermission(B) executed by task A replaces the occurrence of
task A (if any) in o’s ACL with B.

A task can yield its permission explicitly in the code by executing the yield() operation. A
task can, however, also yield (or ‘give back’) its fraction of the permission implicitly. When a
task A finishes, the runtime system removes A from all ACLs it is a member of. This automat-
ically increases the absolute values of the permission fractions of the affected objects. For an
object that only had two tasks A and B in its ACL, removing A from the ACL promotes task
B’s permission to a full permission. Objects where A was the only task in their ACL become
permanently inaccessible (garbage) when A is removed.

As an example where implicitly yielding permissions is helpful, consider the ACL [W1, W2
, W3, Join] for an object o. This ACL contains three worker tasks W1, W2, and W3 as well as a
single Join task. While the workers are executing, they can concurrently read o because they
all have read permission. Over time, the worker tasks will finish one after the other and each
worker will be removed from the ACL. In the end, the Join task is the only task in the ACL.
Join has collected the full permission and therefore has full access to o.

Link and unlink permission: By linking the permission of one object slave to another object
master, slave will share master’s ACL. Linking allows the programmer to express ownership
relations where the permission for slave are always the same as the permission for master.
When the permissions are linked, only master’s ACL has to be managed explicitly. For a task
A to execute the expression slave.linkToPermission(master) it must have full permission on
the slave object; A’s permission on master is not important, however. After the two permis-
sions have been linked, A has the same permission for slave as it had for accessing master. In
terms of slave’s ACL, linking the permissions replaces slave’s ACL with master’s ACL and
keeps them synchronized whenever updates happen to either slave’s ACL or master’s ACL

Two linked objects can be unlinked again by executing slave.unlinkPermission(master).
For unlinking, the executing task A must have the full permission on the slave (and therefore
the master, since they are linked). After the unlink operation, both objects master and slave
have their own individual ACLs again, each of which only contains T .

Shared and immutable permission: The dynamic fractional permissions system supports
two special types of objects: immutable objects and shared objects. Marking an object as shared
or immutable is permanent and cannot be undone. Immutability and sharing is implemented as
two special types of ACLs.

1The term split stems from the notion of fractional permissions. The whole permission of size 1 is split between
the n elements in the ACL such that each element has 1

n th of the permission.
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The immutable ACL grants read access to every task, but no write access. When a task A
issues the operation o.immutablePermission(), the system checks that A has read permission.
If so, it replaces o’s ACS with the immutable ACL.

The shared ACL grants read and write access to every task. By marking an object to be
shared, the programmer asserts to the system that he is aware of the concurrent use of the
object and manages concurrent accesses manually (e.g., through locks or atomic sections). For a
shared objects, the system cannot detect data-races. Calling the operation o.sharedPermission
() requires the issuing taskA to have full permission for o. If this is the case, the system replaces
o’s current ACL with the immutable ACL.

6.2 Example: MapReduce with dynamic data-race detection

MapReduce is a programming model for processing large data sets [32]. A MapReduce program
consists of a Map() function that takes a key/value pair as input and produces some intermediate
data, and a Reduce() function that merges the intermediate data of multiple Map() tasks into
either the final result or the key/value inputs for the next Map()-Reduce() phase.

In MapReduce, the high-level data access patterns are straight forward: The data structure
containing the key/value inputs are read concurrently by each Map() task but it is only written
when it is created by the preceding Reduce() task (or the initial task); the data structure that
collects the intermediate results from the Map() tasks is written concurrently by the Map() tasks
but read only by the subsequent Reduce() task.

In a concrete implementation of a MapReduce computation, a more detailed access policy
must be worked out to prevent data-races. For example, what tasks are allowed to read/write the
intermediate objects produced by the Map() tasks? Can one Map()-task access the intermediate
result of another Map() task? What tasks need read/write access to the results after the MapRe-
duce has finished? Especially larger applications are prone to introduce inconsistencies in the
access policies, resulting in potential data races.

With the dynamic fractional permission system, the programmer is forced to explicitly man-
age the permissions a given task has on a given object. When executing the program, dynamic
checks will detect reliably if the access permissions are managed inconsistently and report er-
rors accordingly.

Figure 6.1 shows one possible implementation of a single MapReduce step using dynamic
fractional permissions for specifying the data access policies. The program consists of three
tasks: MapReduce() on line 3, the Map() task on line 22, and the Reduce() task on line 33.

The only public MapReduce() task is the entry point to the MapReduce computation. Fol-
lowing the now happens-before later pattern described in Chapter 3, MapReduce() expects as its
first parameters a task later that will continue once the MapReduce phase is over. The second
parameter input is an ArrayList of Strings that comprises the input in this example.

The data access policy for this example requires, that the MapReduce() task has full write
access to the input list. This means, that the current now task is the only task in input’s ACL.
For reasons of simplicity, MapReduce() further requires that the this object is globally shared
so that the Reduce() task can later simply publish the result by writing the public result field
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1 public class MapReduce {
2 public volatile Result result;
3 public task MapReduce(Task later, ArrayList<String> input) {
4 assert isShared(this) && isWritable(input, now);
5 //the map tasks will access data concurrently
6 Vector<Data> data = new Vector<Data>();
7 data.sharedPermission();
8

9 Task reduce = schedule Reduce(later, input, data);
10 reduce→later;
11 //grant read access to the reduce task
12 input.splitPermission(reduce);
13

14 for(int i = 0; i < input.size(); i++) {
15 Task map = schedule Map(input, data, i);
16 //grant each map task read access to ’input’
17 input.splitPermission(map);
18 map→reduce;
19 }
20 }
21

22 private task Map(ArrayList<String> input, Vector<Data> data, int index) {
23 assert isReadable(input, now) && isWritable(data, now);
24 //perform complex map operation using the input
25 String s = input.get(index);
26 Data mapped = new ComplexData(s);
27 //make the mapped Data follow the same regime as ’input’
28 mapped.linkToPermission(input);
29 data.add(mapped);
30 //implicitly remove ’now’ from input’s ACL
31 }
32

33 private task Reduce(Task later, ArrayList<String> input, Vector<Data> data) {
34 //all Map tasks gave back their permissions for ’input’; therefore ’now’ has write access
35 assert isWritable(input, now) && isReadable(data, now) && isWritable(this, now);
36

37 //clear input array and compute the result from the data
38 input.removeAll();
39 Result r = new Result(data);
40 //make the result immutable and publish it
41 r.immutablePermission();
42 this.result = r;
43 //give write permission for ’input’ to ’later’
44 input.yieldPermission(later);
45 }
46 }

Figure 6.1: Implementation of the MapReduce pattern using dynamic fractional permissions for
data-race detection.
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declared on line 2. This access policy is dynamically enforced by the assertion on line 4.2

On line 6, the MapReduce() task creates a new Vector object into which the concurrent Map
() tasks will write their intermediate results. To indicate that this Vector will be accessed in
parallel, the programmer must explicitly set the permission on the data object to be shared on
line 7.

Starting from line 9, the MapReduce() task schedules a single Reduce() task, orders it before
the passed later task (line 10), schedules a Map() task for each element in the input vector
(line 15), and orders all Map() tasks to happen before the Reduce() task (line 18). On lines 12
and 17, the MapReduce() task splits its write permission for the input list and shares it with the
Map() tasks and the Reduce() task. After the MapReduce() task has finished it is automatically
removed from input’s ACL leaving the Map() tasks as well as the single Reduce() task.

The scheduler can now start the Map() tasks. Line 23 asserts that each Map() task has read
permission for the input list and write permission for the (shared) data vector. The Map() tasks
read from the input list on line 25 and use it in the subsequent lines to compute some complex
result object mapped which it then stores in the shared data vector on line 29.

The data access policy in this example is that the intermediate data produced by the Map()
tasks should follow exactly the permissions of the input list. By linking the ACL for the mapped
data object to the ACL of the input list on line 28, Map() tasks may read the results of siblings
that have finished their computation.

Whenever a Map() task finishes, it is automatically removed from the ACL of the input
list. When finally the Reduce() task is started, it is the last task remaining in input’s ACL
and thus has full write permissions on the input list as well as all the individual Data objects
stored in the shared data vector (because their ACLs are linked to input). The Map() tasks
have effectively yielded their permissions to the Reduce() task and the fractional permissions
have been re-combined into a full permission. The assertion on line 35 verifies the permissions
required by Reduce().

In this example, the Reduce() task clears the input array on line 38 so that it can be reused
again. On line 39 Reduce() computes the result by combining the intermediate data into a
Result object r. r is then made it immutable on line 41 and published to the world on line 42.

Because the input list is supposed to be reused, the Reduce() task must hand over its full
permission to the later task by explicitly yielding its permission on line 44. This is necessary,
because in the beginning later cannot be in input’s ACL or otherwise MapReduce() would not
have write permission. Therefore, implicitly yielding the permission to later is not possible in
this case.

6.3 Optimizing dynamic fractional permissions

The overhead of dynamic fractional permissions comes from two sources: 1) Overhead of per-
mission management operations and 2) overhead from the automatically inserted read/write
permission checks.

Permissions only have to be managed for objects that are potentially accessed in parallel.
For task-local objects or for objects that are only accessed from tasks ordered by happens-before

2The assertions are inserted automatically by the compiler, not the programmer.
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relationships, the management operations—including the creation of the initial ACL for at new
statements—are unnecessary and can be removed.

Similarly, read and write checks only have to be performed on objects that may be accessed
in parallel. Furthermore, redundant read and write checks can be grouped by moving them
as early as possible and removing duplicates. Imagine, for example, a task T1() that repeat-
edly accesses an object Obj through a variable v1 without intermediate splits or yields of its
permission:

task T1() {
v1 = /*some object*/;
tmp1 = v1.f;
v1.f = 42;
tmp2 = v1.g;

}

A naïve insertion of permission checks would result in the following transformed code:

task T1() {
v1 = /*some object*/;
assert isReadable(v1, now);
tmp1 = v1.f;
assert isWritable(v1, now);
v1.f = 42;
assert isReadable(v1, now);
tmp2 = v1.g;

}

Clearly, such redundant read and write checks on v1 are unnecessary because no other task
can take away the given permission of T1(). By moving the checks as early as possible and then
choosing the strongest permission check (here isWritable()), the example can be transformed
into the optimized form with only a single permission check:

task T1() {
v1 = /*some object*/;
assert isWritable(v1, now);
tmp1 = v1.f;
v1.f = 42;
tmp2 = v1.g;

}

6.3.1 Handling Permission Operations

A permission operation such as v1.yieldPermission(v2) may change the type of permission
the current task now has on v1. Therefore, subsequent accesses to v1 require the compiler
to insert permission checks again. Consider the following example, which is similar to the
example from the previous section:

1 task T1() {
2 v1 = /*some object*/;
3 t1 = /*some task, may be ==now!*/;
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4 assert isWritable(v1, now);
5 tmp1 = v1.f;
6 v1.f = 42;
7 v1.yieldPermission(t1);
8 //Need to check permission on v1 again!
9 assert isReadable(v1, now);

10 tmp2 = v1.g;
11 }

Note that the assertion on line 8 does not necessarily fail for the case where t1 == now.
Therefore, because v1 is accessed after the permissions of now on v1 may have been changed on
line 7, the check on line 3 is not sufficient and the compiler must insert the read check on line 8.

To capture the effects of read and write checks in the control-flow graph, the compiler re-
writes a permission operation such as v1.addPermission(t1) to define a new SSA variable:
v2 = v1.addPermission(t1). All subsequent uses of v1 in the original control-flow graph
are replaced by v2, inserting Φ-nodes when needed. Through this transformation (treating a
permission operation as a definition of a new SSA variable), permission checks can be done “as
early as possible”, meaning grouped directly after the SSA variable definition. Applying this
transformation to the example results in the following code:

task T1() {
v1 = /*some object*/;
t1 = /*some task, may be ==now!*/;
assert isWritable(v1, now);
tmp1 = v1.f;
v1.f = 42;
v2 = v1.yieldPermission(t1);
//v1.yieldPermission() defined v2; v1 is invalid from now on
assert isReadable(v2, now);
tmp2 = v2.g;

}

6.3.2 Auxiliary Rules

The optimizations for removing unnecessary permission operations and for finding optimized
locations to insert permission checks make use of the helper functions shown in Figure 6.2.

The computation of variables that need a read check starts with rule NEEDSREADCHECK–
LOCAL which selects all variables v1 that may point to objects that may be accessed in parallel
by some other task. Rule NEEDSREADCHECK–PHI then propagates this information back-
wards across Φ nodes inside the surrounding method to mark all SSA variables that may reach
the reading bytecode. NEEDSREADCHECK–GLOBAL globally propagates the access informa-
tion to all variables that flow into parameters that may be read inside a method.

The rules for NEEDSWRITECHECK are functionally equivalent to the NEEDSREADCHECK
but start from read and write bytecodes respectively.
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CONFLICTING
v1 MAY POINT TO Obj
v2 MAY POINT TO Obj(1)Obj MAY ESCAPE A and B(2)parallel(A, B)

conflicting(v1,A, v2, B)

NEEDSREADCHECK–LOCAL
BC1 MAY READ v1. f in A

BC2 MAY ACCESS v2. f in B
conflicting(v1,A, v2, B)

needsReadCheck(v1)

NEEDSREADCHECK–PHI
needsReadCheck(v1)
v1 = Φ(. . . , v2, . . .)

needsReadCheck(v2)

NEEDSREADCHECK–GLOBAL
BCcall IS METHOD CALL v1.m(. . . , v2, . . .)

v1 MAY POINT TO Base
f1 IS FORMAL PARAMETER FOR v1 or v2 in Base.m(. . .)

needsReadCheck(f1)
needsReadCheck(v2)

NEEDSWRITECHECK–LOCAL
BC1 MAY WRITE v1. f in A
BC2 MAY ACCESS v2. f in B

conflicting(v1,A, v2, B)
needsWriteCheck(v1)

NEEDSWRITECHECK–PHI
needsWriteCheck(v1)
v1 = Φ(. . . , v2, . . .)

needsWriteCheck(v2)

NEEDSWRITECHECK–GLOBAL
BCcall IS METHOD CALL v1.m(. . . , v2, . . .)

v1 MAY POINT TO Base
f1 IS FORMAL PARAMETER FOR v1 or v2 in Base.m(. . .)

needsWriteCheck(f1)
needsWriteCheck(v2)

Figure 6.2: Auxiliary functions used for optimizing dynamic fractional permissions. The
NEEDSREADCHECK and NEEDSWRITECHECK rules start with marking local variables that
may be accessed concurrently and propagate this information inter-procedurally.

6.3.3 Optimizations

Figure 6.3 shows the optimizations for finding unnecessary permission management operations
and for deciding on the locations, where read and write checks must be inserted.

UNNECESSARYOBJECTACL selects bytecodes BCnew corresponding to new-statements that
create objects Ob j that are never accessed in parallel (and therefore no read or write check
is ever performed on Ob j). For those BCnew, the permission system does not need to create
an initial access control list, because no permission check is ever done for the corresponding
object.

Similarly, UNNECESSARYPERMISSIONOPERATION chooses all bytecodes BC1 corre-
sponding to permission management operations that are performed on objects that never appear
in permission checks.

INSERTREADCHECK then selects the earliest bytecode BC1 that defines a SSA variable v1
without being a Φ node or a formal method parameter. The compiler will insert a read check
at this definition of v1 if v1 requires a read check but no write check. Otherwise, INSER-
TWRITECHECK will make the compiler insert a write check.
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UNNECESSARYOBJECTACL
BCnew is v1 = new C() CREATING Obj

v2 MAY POINT TO Obj
not needsReadCheck(v2)
not needsWriteCheck(v2)

unnecessaryObjectACL(BCnew)

UNNECESSARYPERMISSIONOPERATION
BC1 is v1.{yield � add}Permision(v3)

v1 MAY POINT TO Obj
v2 MAY POINT TO Obj

not needsReadCheck(v2)
not needsWriteCheck(v2)

unnecessaryPermissionOperation(BC1)
INSERTREADCHECK
BC1 DEFINES v1(v1 IS NOT A Φ or A formal)

not needsWriteCheck(v1)
needsReadCheck(v1)

insertReadCheck(BC1)

INSERTWRITECHECK
BC1 DEFINES v1(v1 IS NOT A Φ or A formal)

needsWriteCheck(v1)
insertWriteCheck(BC1)

Figure 6.3: Rules used by the compiler to remove unnecessary permission operations and to
decide where read and write checks must be inserted.

6.4 Evaluation

This chapter presents the performance evaluation of the dynamic fractional permission system.
We compare four different optimization configurations with the original versions of the bench-
marks that do not use a permission system.

6.4.1 Setup of the experiment

As discussed in Chapter 5, all experiments were run on a machine equipped with a Intel Core 2
Duo 2.8GHz and 4Gb of RAM. The compiler implementation is single threaded, however, and
therefore only one core is used during the compilation.

The benchmarks are taken from the ERCO project [111] and were chosen because of their
object-oriented parallelism where objects are used for inter-task communication as opposed to
the shared matrices of numeric applications such as the Java Grande benchmarks [106]. sor
(successive over-relaxation over a 2D grid), and tsp (traveling salesman problem) are data- and
task-parallel applications with data access patterns of scientific codes; threads are synchronized
in a fork/join style based on barriers instead of locks. hedc is a warehouse for scientific astro-
physics data that implements a meta crawler for searching multiple Internet archives in parallel.
The individual queries are handled by reusable worker threads. philo is a simulation of the din-
ing philosophers problem. elevator is a real-time discrete event simulator where elevators are
modeled as individual tasks that poll directives from a central control board. Communication
through the control board is synchronized through locks.
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Figure 6.4: Runtime overhead of different optimization levels for dynamic fractional permis-
sions compared to the original version without a dynamic fractional permission system.

6.4.2 Runtime overhead of dynamic fractional permissions

The effects of the individual optimization parts were evaluated by compiling the benchmarks in
four different configurations:

• In the None configuration, the compiler has no advanced analysis information and must
insert read and write checks on every memory access.

• In the Grouping configuration, redundant permission checks are avoided by inserting per-
mission checks only after variable definitions or at the points where an object’s ACL
may be changed by splitPermission() or yieldPermission operations. While being
a global optimization, this configuration does neither use escape nor schedule analysis
information. This is achieved by removing clauses (1) and (2) of the CONFLICTING rule
in Figure 6.2.

• The third configuration ESC uses an escape analysis plus a points-to analysis to decide
whether two memory accesses executed by different tasks may conflict (clause (1) but
not clause (2) of Figure 6.2).

• The third configuration ESC+SA adds scheduling information to the points-to analysis and
escape analysis to distinguish between accesses that are ordered and accesses that may
happen in parallel.

Figure 6.4 shows the runtime overhead of the benchmarks compiled with the None,
Grouping, ESC, and ESC+SA configurations. The baseline of this comparison is the runtime
of the original version without the dynamic fractional permission system.

For three of the five benchmarks, the fully optimized version (ESC+SA) is within 10% of the
original version. The average performance overhead over all benchmarks is 48% which can
be attributed to the poor performance of the philo benchmark. (Without philo, the average
overhead is 15%.)

In the philo benchmark, most objects are shared and accessed concurrently and the compiler
cannot remove expensive permission checks. This overhead could be reduced significantly by
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making the compiler aware of immutablePermission() and sharedPermission() operations.
The compiler does not need to insert read (read/write) permission checks if it knows that an
object has been flagged as immutable (shared). The current implementation of the optimizations
does not know about immutable and shared permissions, however, and therefore does insert
unnecessary read and write checks in the philo benchmark.

6.5 Related work

Fractional permissions Boyland’s work on fractional permissions [20] introduces a permis-
sion system where a single write permission of value 1 can be split into infinitely many read per-
missions with values <1. Permission fractions can be distributed to subtasks and later reclaimed.
If the system can prove that a task has the original write permission or that it has successfully
reclaimed all fractions of the read permissions, the task can write the data. Because fractional
permissions guarantee that only one task at a time can have the full write permission, data races
are impossible. Terauchi [109, 110] and Boyland [21] later presented further improvements for
inferring fractional permissions. As opposed to the dynamic fractional permissions presented
in this chapter, the previous work on fractional permissions focus on static techniques to prove
data-race freedom and therefore may statically reject programs that are otherwise safe.

SP-bags The basic idea behind SP-bags, introduced by Feng and Leiserson’s [38] and further
refined by Raman et al. [97], is to attach two bags, S and P, to each task. Each bag contains task
IDs of descendent tasks that logically precede the task or that operate in parallel respectively.
Each memory location is instrumented to contain two additional fields, a reader task ID and a
writer task ID. Every time a shared memory location is accessed by a task, the algorithm uses
the S and P bags to check whether the current task can interfere with the task that is recorded
in the reader and/or writer fields. SP-bags share some similarities with the dynamic fractional
permissions but instead of the tasks managing their own bags, dynamic fractional permissions
use access control lists on objects. It is an open question, however, whether one approach is
more flexible than the other or whether they are equally expressive.

Dynamic data-race detection. Dynamic data-race detectors basically fall into two categories:
precise detection, such as the RaceTrack [117] and FastTrack [41] detectors, where every mem-
ory operation is checked for data races; and detectors based on sampling, such as LiteRace [76]
and Pacer [18]. With sampling, not every memory access is checked but periodic samples are
scanned for potential data races. Sampling therefore deliberately introduces some imprecision
for the benefit of increased performance. Dynamic fractional permissions do check every mem-
ory access and therefore fall under the category of precise detection. However, while the above
data-race checkers do not impose any restrictions on the programmer, dynamic fractional per-
missions do enforce explicit permission management.
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6.6 Summary

In the original work, fractional permissions are a mechanism to statically prevent data races.
Permissions are linear capabilities that can be passed from one task to another. By splitting a
permission into fractions, a task can grant multiple other tasks concurrent read access. Because
writing data requires the full permission—and by definition at most one task can have the full
permission—, fractional permissions prevent read/write conflicts. Only when all read fractions
have been returned from the subtasks and the full permission is restored, a task is allowed to
write again. Fractional permissions use a type- and effect-system to statically check a program.

This chapter introduces a dynamic variant of fractional permissions where the programmer
manually manages the splitting and recovering of permissions. The manual management forces
the programmer to come up with a rigid data management scheme and replaces the common
ad-hoc approaches of current languages.

Permissions are maintained and checked at runtime. In the worst case, every read and write
access to an object requires checking the permission of the current task, which introduces a
significant runtime overhead. The optimization described in this chapter makes use of schedule
analysis to remove permission checks whenever possible.



7
Other applications in optimization and

verification

This chapter outlines additional uses of compiler optimization and verification techniques that
are enabled by or benefit from task-schedule information.

Setup of the experiments. The optimizations presented in this chapter have been imple-
mented as prototypes. However, for time reasons we have not conducted systematic perfor-
mance evaluations but only report anecdotal evidence. Unless explicitly stated, the experimen-
tal data presented in this chapter has been collected using the Datalog prototype described in
Section 4.3.

All bddbddb-based experiments were performed on a typical developer machine equipped
with a Intel Core 2 Duo 2.8GHz and 4Gb of RAM. The bddbddb implementation, however, is
single threaded and therefore only one core is in use during the analysis. bddbddb has been
configured to use its built-in pure Java implementation for BDDs.

The set of benchmarks is a subset of the benchmarks introduced in Chapter 5. For evaluating
the effects of each individual compiler analysis on the overall result—points-to analysis, escape
analysis, and schedule analysis—, we use four different configurations:

points-to: In the first configuration, we only use the points-to information to find program
points that may access the same objects.

points-to + schedule: The second configuration uses the escape analysis in addition to the
points-to information to reduce the number of objects that may potentially be accessed in
parallel.

points-to + schedule The third configuration adds scheduling information to the points-to
analysis but does not use escape information.

points-to + escape + schedule: The fourth configuration combines all three analyses for
maximum precision. All optimization rules presented in this dissertation use this config-
uration as they contain clauses using all three analyses.

103
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7.1 Synchronization removal

Like many imperative and object-oriented languages, Java provides a synchronization mecha-
nism based on locks. Whenever a method or block may access data structures that are shared
between multiple threads, the programmer must guard the critical section with a lock. Locks
are an integral part of the Java language and made available to the programmer through the
synchronized keyword.

When a Java thread t1 wants to enter a synchronized section, it must first attempt to acquire
the associated lock. If the lock is held by another thread t2, t1 is blocked. When t2 releases the
lock, one or more waiting threads (including t1) are woken up, each of which tries to acquire
the lock again. If t1 successfully acquires the lock, it is allowed to enter the synchronized
section; if another thread acquires the lock before t1, t1 must continue waiting.

Synchronized sections implement the mutual exclusion property: only one thread at a time
is allowed inside the section guarded by the same lock. In Java, every object is automatically
associated with its own distinct monitor that provides the lock functionality.1 Two code sections
are mutually exclusive if and only if they synchronize on the same runtime object.

7.1.1 Unnecessary synchronization

Generally, a thread-safe library such as the Java standard library cannot know the context it is
used in. To simplify their usage, general purpose libraries often conservatively assume a multi-
threaded environment and guard all critical sections that potentially access shared data with
synchronized sections. Therefore, in many programs a large number of locking operations
may safely be removed because two parallel tasks never contend for the same lock.

If in a given application a thread-safe library is used in a purely single-threaded setting (even
though the rest of the application may be multi-threaded) it may execute many unnecessary lock
acquire() and release() operations. Many studies have shown that unnecessary synchroniza-
tion operations can introduce a significant performance overhead, finding that typical single-
threaded Java programs spend between 10%-50% of their execution time with synchronization
operations [101, 8, 114].

7.1.2 Removing unnecessary synchronization

At the core of the synchronization removal optimization is the problem of classifying
synchronized blocks into required and unnecessary. A synchronized section is required if
two parallel tasks t1 and t2 may try to synchronize on the same object.

On the Java source code level, a synchronized block is syntactically given by match-
ing curly braces. On the bytecode level, the synchronization is translated into a single
monitorenter and one or more monitorexit bytecode instructions. Each monitorenter
and monitorexit instruction references a variable that at runtime points to the object that

will be used as the lock. The Java virtual machine specification requires monitorenter and
monitorexits to be well balanced, meaning that every monitorenter is eventually followed by

1In addition to locking, monitors offer a wait/notifymechanism that can be used for inter-process signaling.
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SYNC-REMOVAL
BC1 IS MONITORENTER, MAY EXECUTE IN A
BC2 IS MONITORENTER, MAY EXECUTE IN B

BC1 SYNCHRONIZES ON v1
BC2 SYNCHRONIZES ON v2

v1 MAY POINT TO Obj
v2 MAY POINT TO Obj

Obj MAY ESCAPE A and B
parallel(A, B)

requiredMonitorenter(BC1)

Figure 7.1: Computing required monitorenter bytecodes for synchronization removal. The
parallel() relation is computed by the schedule analysis.

a corresponding monitorexit on the same object [72]. 2

We can therefore translate the question whether a synchronized block is required or not into
the question whether the corresponding monitorenter conflicts with another monitorenter
instruction that may lock on the same object in parallel.

Figure 7.1 shows the rule for the synchronization removal optimization. For each
monitorenter bytecode BC1, the compiler checks whether requiredMonitorenter(BC1) holds
true. BC1 is required, if there is another monitorenter bytecode BC2 that at runtime may
synchronize on the same object Ob j in parallel. If BC1 is not required, the compiler can re-
move the synchronized section by removing the monitorenter together with the correspond-
ing monitorexit bytecodes.3

7.1.3 Experimental data

The result of the synchronization removal is shown in Figure 7.2. Most of the presented bench-
marks are hand-optimized to make use of data-parallelism and work mainly on unsynchronized
arrays, data objects, and scalar values. Synchronization is often avoided in favor of separating
the computation into multiple ordered phases. From all benchmarks, only hedc actively uses
synchronized methods in the application source code in a way that is more complex than just
collecting the results in a synchronized Vector object.

Despite the benchmark authors trying to avoid synchronization as much as possible, all
benchmarks directly or indirectly call library methods that are synchronized. Typical cases are
calls to synchronized StringBuffer.append() to concatenate strings. Other synchronization

2To reduce bytecode size and allow for certain optimizations, synchronized methods are not translated
into monitorenter(this) and monitorexit(this); instead, the method is flagged as synchronized
in the class file and the Java virtual machine specification requires the calling bytecode to acquire and release the
lock. For simplicity, in this section we treat a method synchronized void foo(){ ... body ...} as
the syntactically equivalent void foo(){ synchronized(this){ ... body ... }}

3Matching corresponding monitorenter and monitorexit bytecodes requires additional analysis of the
method control flow and may be impossible in the presence of aliasing.
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Figure 7.2: Number of monitor enter statements that are required.

statements are in library methods such as Throwable.printStackTrace() and are necessary
because tasks may throw exceptions and print their stack traces concurrently.

For all benchmarks, the synchronization removal optimization was able to reduce the num-
ber of monitorenter bytecodes. In the first six benchmarks, adding the schedule analysis to
the points-to and escape analysis did not improve the result. Probably, this is because the
number of monitorenter bytecodes is already close to the minimal required amount in those
hand-optimized benchmarks. For the raytracer and montecarlo benchmarks, however, the
schedule analysis increased the precision significantly over the escape analysis.

In summary, the synchronization removal optimization was able to remove between 33%
and 100% with an average of 68.84% of the synchronized blocks in the benchmarks.

7.1.4 Related work

Escape-based synchronization removal. There has been a fair amount of work on using es-
cape analysis for synchronization removal. The system described by Bogda [17] statically de-
tects thread-local objects through an inter-procedural, flow- and context-insensitive, constraint-
based whole-program analysis. Their analysis proceeds in two steps. First they determine when
a reference escapes the stack and second when a reference in the heap escapes local objects.
Wang and Sun [114] describe a context-sensitive escape analysis that is based on a more tra-
ditional data-flow analysis. Their analysis consists of multiple phases that compute method
summaries and then propagates call-context information as well as escape information along
call graph nodes. Whaley and Rinard [116] and Choi et al. [31] use similar graph-based pro-
gram abstractions for performing escape analysis. Whaley and Rinard’s points-to escape graphs
as well as the connection graphs introduced by Choi et al. can be summarized independently of
the calling context, allowing for an efficient compositional analysis.

Purely escape-based techniques preserve synchronization on objects that are visible to multi-
ple tasks. Whenever an object escapes at least one task, escape-based techniques conservatively
assume that the object must be synchronized, regardless of whether multiple tasks may actu-
ally try to synchronize on the same object in parallel or not. The synchronization optimization
presented in this section also uses an escape analysis, but it adds information about whether an
object may be synchronized by more than one task during the object’s lifetime.
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Equivalence-based synchronization removal. The analysis described by Ruf [101] can
eliminate synchronization operations even on objects that escape their allocating task if it can
show that only one task accesses the escaping object. A dynamic synchronization operation in
task A on an object Ob j can be eliminated whenever no other task B attempts to synchronize
Ob j during the execution of the guarded code. In a first phase, Ruf identifies thread alloca-
tion sites and computes the set of methods the thread potentially executes and whether the
allocation site may be executed more than once. By combining the information about threads
with points-to information, the analysis can decide for each synchronized-block and method
whether potentially multiple threads may synchronize on the same object. The synchronization
removal optimization presented in this section follows the exact same idea. However, instead of
using the relatively imprecise thread information, where any two threads are potentially parallel,
our optimization is based on a schedule analysis that incorporates task-order information.

Aldrich et al. [7, 8] describe a collection of analyses fro eliminating unnecessary synchro-
nization for thread-local objects, nested monitors, and synchronization on reentrant locks. The
synchronization removal optimization presented in this section does not recognize nested or
reentrant locks. However, the techniques presented by Aldrich et al. could be used to also
handle those cases and improve the result of the optimization.

7.2 Optimizing strong atomicity in software transactional
memory

Software Transactional memory (STM) is an alternative to synchronization that avoids many of
the problems associated with locks. A STM system replaces existing synchronization mecha-
nisms with atomic statements of the form atomic{s}, where s is a statement or a list of state-
ments. The STM runtime guarantees that s is executed with transactional semantics, meaning
s is executed as though there was no interleaving computation. When the transaction inside an
atomic region completes, it either commits, making the changes visible to other processes, or
it aborts, causing the transaction to be rolled back, undoing all memory operations. After an
abort, the atomic region is re-executed until it successfully commits.

In contrast to traditional database transactions, STM systems must handle the case where
the same memory location is accessed concurrently both inside and outside a transaction. The
semantics of an STM systems can be categorized into strong and weak semantics, depending on
how accesses to memory outside an atomic section are handled.

Weak atomicity semantics: A transactional system is said to have weak atomicity semantics
if it provides the no-interleaving guarantee only among atomic sections but no guarantee is
made on non-transactional memory accesses [79]. Under weak atomicity semantics, reads and
writes outside transactions are allowed to be interleaved with transactions. Similar to the prob-
lem of data-races in lock-based systems, it is the programmers’ responsibility to ensure that
there are no conflicting memory accesses between transactional and non-transactional code.
Being less rigorous in its guarantees, weak semantics allows for a more efficient implementa-
tion but it sacrifices ordering and isolation guarantees. Some implementation approaches for
weak STM systems, such as eager versioning and lazy conflict detection, can lead to incorrect
execution of programs that are correctly synchronized under locks [105].
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Initially: x is even

Task 0
1 atomic {
2 x++;
3 x++;
4 }

Task 1

r = x;

Can r be odd?

Figure 7.3: Weak versus strong atomicity (example from [105]): Under weak atomicity, task 1
can observe an odd value in r. Under strong atomicity, r is always even.

Strong atomicity semantics: With strong atomicity semantics, memory accesses outside an
atomic section are treated as if they were single-operation atomic transactions. Without spe-
cial hardware support and/or compiler optimization, strong atomicity is generally considered
too performance limiting because it requires all reads and writes outside transactions to be syn-
chronized with memory operations inside transactions. Even with strong atomicity semantics,
data-races are possible between conflicting memory accesses outside transactions.

Weak atomicity semantics suffers from unpredictable and implementation specific behavior
but it promises performance benefits. The stricter guarantees of strong atomicity on the other
hand provide superior formal semantics but need compile-time and/or runtime optimizations for
satisfiable performance. Figure 7.3 illustrates how strong atomicity provides more guarantees
than weak atomicity. Task 0 maintains the invariant that x is even. However, under weak atom-
icity it is possible for task 1 to observe an odd value if it reads x between the two increments of
task 0. Under strong atomicity, the read of x in task 1 is an implicit single-operation transaction
and therefore invariant x is even is observed by both tasks.

7.2.1 Reducing strong atomicity overhead

The overhead of strong atomicity comes from the fact that memory operations outside an
atomic section must be treated as implicit single-operation transactions. An implementation—
especially if no hardware support is available—must therefore replace a simple memory read
or write with a more complex protocol that implements the transactional semantics, such as
calls to static helper methods. However, without additional knowledge the STM system must
conservatively assume that all memory accesses outside atomic sections must be instrumented.

One obvious compiler optimization is therefore to only replace those read and write byte-
codes that actually may conflict with atomic sections at runtime. Figure 7.4 presents such an
optimization based on the schedule analysis. The compiler will check for each read bytecode R
and write bytecode W whether they must be replaced with a single-operation transaction.

In both rules, the first clause checks that this transformation is only applied to bytecodes that
may actually be executed outside a transaction. This check is a simple reachability predicate
that, starting from a given task A, contains all read respectively write bytecodes that can be
reached without crossing an equal number of atomic section enter and exit statements.

Similarly, the second clauses in both rules look for potentially conflicting bytecodes that
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REQIRES-READ-TRANSACTION
BCR IS READ OUTSIDE TRANSACTION, MAY EXECUTE IN A
BCW IS WRITE INSIDE TRANSACTION, MAY EXECUTE IN B

BCR READS v1. f
BCW WRITES v2. f

v1 MAY POINT TO Obj
v2 MAY POINT TO Obj

Obj MAY ESCAPE A and B
parallel(A, B)

requiresReadTx(BCR)
REQIRES-WRITE-TRANSACTION

BCW IS WRITE OUTSIDE TRANSACTION, MAY EXECUTE IN A
BCX IS READ OR WRITE INSIDE TRANSACTION, MAY EXECUTE IN B

BCW READS v1. f
BCX READS OR WRITES v2. f

v1 MAY POINT TO Obj
v2 MAY POINT TO Obj

Obj MAY ESCAPE A and B
parallel(A, B)

requiresWriteTx(BCW )

Figure 7.4: Rules deciding for each read bytecode R and write bytecode W whether they must
follow transactional semantics in order to guarantee strong atomicity.

may be executed inside a transaction. Because a read may only conflict with a write, it is
enough to check only for conflicting write bytecodes in the REQUIRES-READ-TRANSACTION
rule. In the REQUIRES-WRITE-TRANSACTION rule, a write outside a transaction conflicts with
both reads and writes.

The remaining clauses then test if the access outside the transaction and the access inside
the transaction may actually access the same memory from parallel tasks.

7.2.2 Related work

Hindman and Grossman [49] present a system that achieves strong atomicity via a source-to-
source translation and does not require special hardware or virtual machine support. Because
of the prohibitively high overhead of the basic translation, Hindman and Grossman also briefly
describe a set of compile-time analyses to remove barriers from non-transactional code while
preserving strong atomicity. Complementary to standard escape and points-to analyses they
particularly outline an analysis that exploits the fact that strong atomicity does not constrain
two memory accesses that occur outside an atomic block. They can remove a barrier if the
analysis shows that the accessed object could never be accessed within any transaction.

The main difference between the optimization described by Hindman and Grossman and
the optimization presented in this section is the use of a schedule analysis. Adding the schedule
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analysis results in the additional clause parallel(A,B) in each of the optimization rules. If in
the worst case the schedule analysis cannot compute any task-order information (and therefore
conservatively classifies all tasks as parallel) our analysis is essentially equivalent to Hindman
and Grossman. If the schedule analysis can compute relevant ordering information, however,
our analysis is more precise allowing the optimizer to remove more read- and/or write barriers.

7.3 Synchronization variant selection

When designing a library, the designers must decide what parts of the library should be thread-
safe by default and what parts remain unsynchronized. Often, this decision is difficult to make
for the general case, because the library designers do not know the context in which their library
will be used. If the library is written without thread-safety, it’s the library users’ responsibility
to correctly synchronize. Unsafe libraries increase the burden on the user and make the library
more difficult to use, possibly resulting in a competitive disadvantage over similar libraries.
Correctly synchronized libraries, however, may introduce extra performance overhead when
used in a single-threaded context.

If the compiler were able to perfectly choose between synchronized and unsynchronized
variants of classes and methods, the best of both worlds could be achieved: ease of use for
the programmer because the compiler handles synchronization and high performance because
unnecessary synchronization is avoided. This section describes an optimization that selects
synchronization variants for some compiler-known classes and methods.

7.3.1 Code duplication in Java libraries

The tension between providing thread-safe versus thread-unsafe implementations often leads to
code duplication. For example, take the evolution of the Java standard library (JDK) over the
last decade. In the early versions of the JDK, utility classes such as java.util.Vector and
java.lang.StringBuffer tended to be fully synchronized and therefore safe to use in multi-
threaded environments. Providing thread-safety by default increased the ease of use for those
classes. However, the lack of alternatives also meant that single-threaded code and thread-local
objects suffered from a performance penalty.

In later versions of the JDK, multiple “drop-in-replacements” for thread-safe classes have
been introduced. Those replacement classes provide equal (or at least very similar) interfaces to
their thread safe counterparts but without synchronization. For example, java.util.ArrayList
is an unsafe version of java.util.Vector4 whereas java.lang.StringBuilder can replace
java.lang.StringBuffer if synchronization is not needed.

In general, it is the programmers’ responsibility to use the thread safe versions where needed
and revert to the unsafe versions where the correct synchronization is guaranteed by the library
client code. Only in very view cases can the Java compiler help with this decision. For example,
in a string concatenation expression such as String s = "abc" + foo() + "def", early Java

4java.util.ArrayList is not an exact copy of java.util.Vector (modulo synchronization) but it
shows some slight differences in behavior, too. For example, when increasing the capacity, a Vector defaults to
doubling the size of its array, while the ArrayList increases its array size by 50 percent. Therefore, in some rare
cases a simple drop-in replacement may change the observable outcome of a program.
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USE-SAFE-CLASS-VARIANT
BCnew IS new STATEMENT CREATING Obj

A MAY ACCESS Obj
B MAY ACCESS Obj

Obj MAY ESCAPE A and B
parallel(A, B)

useSafeClassVariant(BCnew)

USE-SAFE-METHOD-VARIANT
BCcall IS METHOD CALL v1.m(. . .)

BCcall MAY EXECUTE IN A
v1 MAY POINT TO Base

Base.m(. . .) MAY ACCESS Obj
B MAY ACCESS Obj

Obj MAY ESCAPE A and B
parallel(A, B)

useSafeMethodVariant(BCcall)

Figure 7.5: Safe variant selection optimization with class-level and method-level granularity.

compilers replaced the + concatenations with calls to StringBuffer.append() rewriting the
expression to:

String s = new StringBuffer("abc").append(foo()).append("def").toString();

Starting with version 1.5, however, the Java compiler performs a local escape analysis to
decide whether the StringBuffer can safely be replaced by a more performant (albeit unsyn-
chronized) StringBuilder.

The current strategy of many general purpose libraries, such as the JDK, is to provide thread
safe and unsafe alternatives for some or all of their classes. This not only results in code du-
plication and therefore higher complexity and maintenance costs, but also shifts the burden of
choosing the right variant to the programmer making it again harder to use the library correctly.

7.3.2 Compiler selected synchronized/unsynchronized variants

The goal of the synchronization variant selection optimization is to allow programmers to use
thread safe implementations of their data structures but reduce the synchronization performance
penalty by letting the optimization choose what variant—thread safe or unsafe—to use at a
particular program point. This optimization requires the compiler to have knowledge about
the available variants of classes and/or methods. The compiler may get this information from
different sources: Variants present in the standard JDK may be intrinsics and hard-coded into the
compiler; the compiler may also choose to automatically create an unsynchronized version of
every synchronized method; or the programmer may provide annotations telling the compiler
about class and method variants.

Synchronization variants for this optimization come in two granularities: class-level variants
and variants on the method-level.

Class-level variants: On the class level, a class B may function as an unsynchronized drop-
in replacement for another thread-safe class A (that is, B has the same interface as A). This is
the case with the java.util.ArrayList and java.lang.StringBuilder JDK classes described
above.
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Figure 7.6: Number of allocation sites that may result in shared objects.

Method-level variants: Synchronization variants can also be provided on the method level
(even though the designers of the JDK did not choose this approach). The java.util.Vector
class, for example, may provide unsafe methods such as add_unsafe() and remove_unsave()
that are the unsynchronized counterparts of add() and remove(). In this case, the caller can
decide whether to use the thread-safe or the unsafe variant. The advantage of the method-level
over the class-level granularity is that at runtime, the same object can be used in single-threaded
phases without synchronization and still be safely synchronized in the multi-threaded phases.
When the synchronization variants only exist on the class level, the compiler must conserva-
tively choose the thread-safe variant whenever an object may be used in a multi-threaded phase.

Figure 7.5 shows the synchronization variant selection optimization with class-level and
method-level granularity. When choosing variants on the class level, rule USE-SAFE-CLASS-
VARIANT checks for each new bytecode BCnew whether the thread safe variant must be used. If
the analysis shows that the object Ob j created at BCnew will never be accessed in parallel, the
compiler can rewrite BCnew to use a more performant unsafe variant.

For choosing the right variant on a method level, rule USE-SAFE-METHOD-VARIANT
checks every call of the form v1.m(...) represented by bytecode BCcall . The compiler can
rewrite BCcall to use the more performant unsafe method if it can show that none of the objects
Ob j that may directly or indirectly be accessed by the call v1.m(...) may be accessed by a par-
allel task B. Finding all objects that may be accessed by a method call is done by a reachability
analysis on the call-graph starting from the node representing Base.m().

7.3.3 Experimental data

Figure 7.6 shows the effect of the schedule analysis on the number of allocation sites that may
result in shared objects. This experiment does classify all allocation sites, regardless of what
type of object is actually created at the allocation site.

The points-to + escape configuration is equivalent to existing thread-escape analyses
where only those creation sites are flagged that produce objects that may escape the thread.
For most benchmarks, the points-to + escape configuration is very effective in classifying
allocation sites that could use thread-unsafe variants. For other benchmarks such as moldyn and
raytracer, however, adding the schedule analysis can further reduce the number of shared ob-
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Figure 7.7: Number of methods that may conflict in a parallel context.

jects significantly. In those benchmarks, scheduling information helps to identify cases where
an object escapes a task but is only accessed by tasks that are ordered by happens-before rela-
tions.

On average, the points-to + escape configuration reduces the total number of allocation
sites that may result in shared objects by 76%. Adding the schedule analysis, the number is
reduced by 83% on average, a 7% improvement over the points-to + escape configuration.

Figure 7.7 depicts the number of methods that may conflict when executed in a parallel
context. Across the benchmarks, the number of possibly conflicting methods varies between
2% and 30% of all methods executed. For the other methods, a more performant thread-unsafe
variant may be chosen. Adding the schedule analysis improves the classification of potentially
conflicting method calls from 13% on average with the points-to + escape configuration by
4% to 9% on average with the points-to + escape + schedule configuration.

7.4 Happens-before order relaxation

Programmers as well as automated compiler transformations may introduce unnecessary →-
statements in the source code. Happens-before order relaxation aims at removing such super-
fluous →-statements again. This can be beneficial in two ways:

• Removing a→-statement that creates an ordering between two tasks that are already (tran-
sitively) ordered can improve the performance of later analyses as well as improve the
generated code. Unnecessary transitive →-statements can be found by looking for transi-
tive edges in the schedule.

• Removing a →-statement between two tasks that are otherwise independent can increase
the parallelism in a program. Removing a non-transitive edge between two tasks may be
allowed if the read- and write-sets of both tasks are disjoint.
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7.4.1 Example: Parallel continuation passing style

Many compiler optimizations require a program to be first transformed into a suitable internal
representation (IR). The two most common forms of IRs are static single assignment (SSA) and
continuation-passing style (CPS). Translating a program into SSA or CPS helps with compiler
analyses because both forms make the control flow explicit

While SSA is widely used in compilers for imperative languages, many compilers for func-
tional languages prefer CPS, even though both forms are technically equivalent [11, 56]. In
CPS, a function never returns to its caller as in the more familiar direct style. Instead, it ex-
pects a continuation function as an additional parameter. When the function has finished its
computation, it will call the continuation function and pass it the result value.

As an example for how a program is translated into CPS, consider a method fib() for
computing fibonacci numbers:

int fib(int k) {
if (k <= 2) return 1;
else return fib(k-1) + fib(k-2);

}

The else case contains two recursive calls to fib(). Because of the +, however, none of
these calls is a tail call because the method has to wait until both functions return before the
results can be added.

A translation into CPS splits the else case into two inner functions generated by the com-
piler5:

void fib(int k, #{int -> void} continuation) {
if (k <= 2)
continuation(1);

else
fib(k-1, #{ int left ->

fib(k-2, #{int right -> continuation(left+right) })
});

}

This example demonstrates how the translation into CPS adds the additional parameter
continuation for the continuation to fib() and changes the return type of fib() to void.
The return in direct style is translated into a tail call to this continuation function, passing the
result as a parameter.

SSA and CPS both have a serious drawback when it comes to multi-threaded systems: Nei-
ther one has any support for parallelism. In CPS, for example, the call to the continuation
function must be in tail-position; that is, it must be the last thing the function does. Because
there can be only one such tail-call, a function cannot fork computation in CPS. This makes
CPS inherently single-threaded.

5In the current version, Java does not contain function pointers and real closures, which are both important for
CPS translation. Both could be somewhat simulated with anonymous classes at the expense of much increased ver-
bosity. For the sake of this example, however, we use the lambda expressions for Java proposed by JSR 335 [100].
The notation #{int left -> left + 42} represents a closure with one parameter left that computes the
value left + 42. The type of the closure is #{int -> int}
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1 task fib(int k, Task later) {
2 if(k <= 2) {
3 now.result = 1;
4 } else {
5 Task sum = Task.create(); //forward declarations of sum so that we can use it already
6 Task left = schedule fib(k-1, sum);
7 Task right = schedule fib(k-2, sum);
8

9 Task then = now; //capture now to use it in sum
10 //sum "returns" for fib()
11 sum = schedule #{ -> then.result = left.result + right.result };
12

13 left→right; //left-to-right evaluation order in original program
14 right→sum;
15 sum→later;
16 }
17 }

Figure 7.8: Fibonacci numbers translated from CPS to pCPS.

The task model with explicit ordering constraints introduced in Chapter 3 can be used as the
basis for a parallel continuation passing style (pCPS) form. A transformation similar to CPS
can translate the function fib() into the pCPS version with tasks and →-statements shown in
Figure 7.8.

The sequential function calls in the expression fib(k-1) + fib(k-2) are translated into
code that schedules two tasks left and right to recursively call fib() (lines 6 and 7) and a
continuation task sum on line 11 that adds the two results.6 On line 9 a reference to the current
task now is stored in the local variable then. Inside the closure of sum(), the then-variable
allows us to set the result slot in behalf of the outer fib() task so that the later task can read it
from there.

Because the original program is sequential in nature with a left-to-right evaluation order for
the + operator, all scheduled tasks are ordered as a linear list on lines 13 to 15.

7.4.2 Removing unnecessary ordering

In the transformed pCPS version of the fib() method from Figure 7.8, the happens-before
edge on line 13 is not strictly necessary and can be removed. The edge was introduced by the
transformation mainly because of the implicit left-to-right evaluation ordering in the original
expression fib(k-1) + fib(k-2). However, a simple analysis can show that the two calls to
fib() are independent on the data they use and can therefore be executed in parallel.

When removing a →-statement, the compiler must ensure that the transitive ordering is
kept intact. Take, for example, the schedule shown in Figure 7.9(a). Simply removing the

6Because tasks left and right need a reference to sum and sum needs a reference to left and right,
this example uses a forward declaration for sum. The expression Task.create() on line 5 creates an empty
task object that has no execution target yet; the execution target is set when the compiler sees the corresponding
schedule statement on line 11.
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Figure 7.9: Fixing the transitive ordering in the fib() schedule after removing the edge f.

unnecessary edge f results in the schedule shown in Figure 7.9(b). This schedule is broken,
however, because by removing f the transitive ordering between fib(k) and fib(k-2) as well
as the transitive ordering between fib(k-1) and sum that was present before the removal is
missing.

When deleting an edge a → b, the transitive ordering is maintained by adding additional
edges to the schedule: for each incoming edge x→ a into node a the compiler creates a new
edge x→ b; similarly, for each outgoing edge b→ y from b the compiler creates an edge a→ y.

In the example, tasks fib(k) and fib(k-2) are already ordered by an implicit creation
edge and the compiler does not need to explicitly order them. For ordering fib(k-1) and sum,
however, the compiler must add the statement left→sum when it removes left→right. This
adds in the additional edge g’ shown in Figure 7.9(c) and, together with the implicit creation
edge e’, fixes the transitive ordering. The parallelism has been increased, however, because the
fib(k-1) and fib(k-2) tasks can now be executed in parallel.

7.4.3 Related work

A happens-before order relaxation is an automated compiler transformation that increases the
parallelism in a sequential part of a program. As such, happens-before order relaxation is
related to the techniques for auto scheduling and parallelism extraction of Hierarchical Task
Graphs [95, 44] and the Kimble IR [15]. Both approaches are discussed in more detail in Sec-
tion 3.8.

Another approach for automatically increasing parallelism in a program uses the polyhedral
(or polytope) model [46]. The polyhedral model is a mathematical framework that represents
d perfectly nested loops as a d-dimensional polytope, a mathematical structure where each
point of the index space represents one iteration step of the loop nest. By applying a space-
time mapping, which are affine coordinate transformations, the polytope is transformed into
another equivalent polytope with some dimensions representing space and some dimensions
representing time. This target polytope can be translated back into nested loops, where each
space dimension becomes a parallel loop and each time dimensions become a sequential loop.
The polyhedral model works well for scientific code that works with tight nested loops on
matrices. In comparison, the happens-before order relaxation assumes a higher-level program
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design based on tasks and happens-before relationships.

7.5 Verifying programmers’ sharing intentions

When writing parallel programs, programmers make assumptions about what objects will be
shared between tasks and accessed concurrently. If their assumptions are wrong, the program
will not behave as expected. If objects that the programmer assumed to be shared are actually
task local, the program takes a performance hit by introducing unnecessary synchronization.
If objects that the programmer assumed to be task local are actually accessed concurrently,
the program contains (often hard-to-detect) data-races that result in erroneous behavior or even
crash the program.

When the programmer has wrong assumptions about what objects are shared, the program
is most likely incorrect. More importantly, it is generally impossible to automatically correct a
program that was created with wrong sharing assumptions in mind. For example, the argument
has been made that even sequential consistency as presented in Chapter 5 fails to prevent many
common programming mistakes:

“More generally, programmers do not reason about correctness of parallel code
in terms of interleavings of individual memory accesses, and sequential consistency
does not prevent common sources of concurrency bugs arising from simultaneous
access to the same shared data (for example, data races). Even with sequential con-
sistency, such simultaneous accesses can remain dangerous, and should be avoided,
or at least explicitly highlighted. Relying on sequential consistency without such
highlighting both obscures the code, and greatly complicates the implementation’s
job.” [2]

The goal of verifying programmers’ sharing intentions is to compare programmer-provided
sharing annotations with the sharing information computed by the compiler. The programmer
may annotate classes, fields, or even individual new statements, explicitly highlighting the cor-
responding objects as being shared. The compiler checks whether the programmer assumptions
are compatible with the information from the compiler analysis. If the compiler and the pro-
grammer disagree, the compiler generates a warning.

Figure 7.10 shows the rules the compiler can use to decide whether a class, a field, or a
new-statement should be annotated as being shared.

As an example, consider the compiler checking the sharing intention of a field f. If f is
marked as shared but it is not an element in the sharedField() relation, the compiler warns the
programmer that his sharing assumption is not correct. If, however, f is not annotated, but it is
an element in sharedField(), the compiler warns about potential data-races.

7.5.1 Experimental data

This section presents preliminary experimental data for verifying programmers’ sharing in-
tentions for object fields. For verifying sharing annotations on individual new statements, the
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SHAREDCLASS
Obj IS OF CLASS K
A MAY ACCESS Obj
B MAY ACCESS Obj

Obj MAY ESCAPE A and B
parallel(A, B)

sharedClass(K)

SHAREDFIELD
BCW WRITES v1. f , MAY EXECUTE IN A

BCX READS OR WRITES v2. f , MAY EXECUTE IN B
v1 MAY POINT TO Obj
v2 MAY POINT TO Obj

Obj MAY ESCAPE A and B
parallel(A, B)

sharedField( f )
SHAREDNEWSTATEMENT
BCnew IS new STATEMENT CREATING Obj

A MAY ACCESS Obj
B MAY ACCESS Obj

Obj MAY ESCAPE A and B
parallel(A, B)

sharedNewStatement(BCnew)

Figure 7.10: Rules to check what classes, fields, and new-statements should be annotated as
being shared.
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Figure 7.11: Number of pairs of static field accesses that may interfere.

experimental data from Figure 7.6 gives an indication of the effectiveness of the schedule anal-
ysis because rule SHAREDNEWSTATEMENT of Figure 7.10 is functionally equivalent to rule
USE-SAFE-CLASS-VARIANT of Figure 7.5.

At the core of rule SHAREDFIELD lies the question whether two program points BCW and
BCX may interfere at runtime by accessing the same object Ob j concurrently, where BCW is
a write of field f and BCX is a read or write of f. We evaluate the precision of the different
analysis configurations by looking at the number of pairs of program points BCW and BCX
that are considered to be interfering. Note that by counting program point pairs, an individual
program point BCW may be counted multiple times if it interferes with more than one other
program point. We further distinguish between interferences on instance fields and interferences
on static fields.
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Figure 7.12: Number of pairs of instance field accesses that may interfere.

Figure 7.11 presents the number of program points pairs that may interfere when accessing a
static field. Because the escape analysis classifies all objects that are reachable from a static field
as escaping, the escape analysis does not have any effect on computing static-field interferences
and has been omitted from the results. On average, adding scheduling information reduces the
number of potentially interfering static field accesses by 81.8%.

In Figure 7.12 we compare all configurations when computing pairs of interfering instance
field accesses. For moldyn and raytracer, the schedule analysis reduces the number of potential
interference points more than the escape analysis whereas the escape analysis performs better
for hedc and montecarlo. In all cases, however, combining the escape analysis with a schedule
analysis is beneficial and reduces the set of interfering program points by on average 79.1% for
interfering instance field accesses as compared to 63.4% if only an escape analysis is used.

Table 7.1 presents the overall running time of the sharing intention verification. The veri-
fication time contains the individual analyses plus the actual computation of interfering static
field accesses and instance field accesses. Looking at the analysis part separately, the escape
and schedule analysis together add between 5% and 28% (average 19.79%) overhead to the
points-to analysis. However, the additional escape and schedule information has a positive ef-
fect on the overall running time of the verification which in all cases makes up for the increased
analysis time. This speed-up happens because the additional information quickly reduces the
number of program points that have to be checked against the points-to sets. This results in
smaller BDDs and speeds up all BDD operations. We did not try to find a good variable order-
ing for the generic optimization and therefore it is likely that the absolute time reported in Table
7.1 could be significantly improved by simple variable re-ordering. However, the positive effect
of reducing the overall search space on the running time of the optimization is clearly visible.

7.6 Summary

The case studies from Chapters 5 and 6 introduced optimizations for non-trivial systems and
provided detailed evaluations. However, task-schedule information can be applied to various
other optimizations and verifications. This chapter gives an overview of a set of optimizations
and verifications that have been explored in the scope of this dissertation but that, for time
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reasons, have not been thoroughly evaluated. However, we report anecdotal and experimental
data for those cases where we have a prototypes available.
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8
Future directions

This chapter discusses some possible directions for future work. They can be categorized into
improvements to the task model, extensions of the schedule analysis, additional use cases for
scheduling information, and integration of schedule analysis with just-in-time compilers.

8.1 Task model extensions

Transforming higher level programs: The case studies presented in Chapters 5 and 6 have
shown that it is feasible for programmers to adapt existing programs to follow the task model
presented in Chapter 3. Adapting the benchmarks was relatively straight forward, because the
benchmarks are all written with traditional parallel execution patterns in mind. This means, that
there are only relatively few points in the benchmarks that actually schedule new tasks and most
scheduling of subtasks happens directly in a task’s main method and not further down the call
chain. Therefore, for the most part transforming the original benchmarks into programs that
follow our task model required little more skill than applying syntactic changes.

If the assumption holds, however, that future programs will exhibit much more fine-grained
parallelism to make use of multicore processors, the (parallel-)continuation passing style un-
derlying our model makes writing such programs syntactically awkward. Instead, programmers
will probably want to use higher-level parallelism constructs and the compiler would do the
transformation into the task model automatically for them.

Future work in this area would be to design and implement a pre-processing framework
that transforms different parallelism constructs (language constructs or library calls) into a pro-
gram following our task programming model. We expect this transformation to be similar to a
continuation passing style transformation but we have not done any research into this direction.

Extensions to the model: One of our design goals was to design a minimal task model that
contains as few constructs as possible. However, a feasible alternative to a complex transforma-
tion of high-level programs into our minimalist model would be to extend the model with more
complex constructs and adapt the schedule analysis accordingly. Extending the task model
would make the transformation of existing programs easier but it would add additional com-
plexity to the schedule analysis.

An example for a useful extension to the task model would be a special happens-within
edge. This edge would tell the analysis that the parent task is suspended while the child tasks
are running and then resumes computation in the parent task.

123
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A happens-within edge would allow for a direct translation of fork/join style constructs. Our
current model requires the compiler or programmer to cut the parent task into two pieces, one
that contains the code that schedules the fork-computation and one that contains the code after
the join.

8.2 Improving schedule analysis precision

Directional ordering information: The schedule analysis presented in this dissertation com-
presses the scheduling information into the relation parallel(A,B). As the case studies from
Chapters 5 and 6 have shown, this relation contains enough information for effectively imple-
menting many optimizations.

Future optimizations, verifications, or analyses, however, may be interested in more detailed
information. For example, verifying that a database connection has always been opened before
subsequent tasks access it requires directional information in the form of a relation task1 →
task2.

The problem with computing actual happens-before and happens-after information is that
at analysis-time the compiler can only work with abstract objects. Imagine that in the above
example the program opens a connection, starts some workers, and closes the connection; and
it repeats this process multiple times. The static analysis may be forced to abstract the possibly
infinite number of Open(), Worker(), and Close() task instances into three single analysis-time
objects. This would result in a circular relation:

Open()→Worker()→Close()→Open()→Worker()→. . .
Here, the fact Open()→Close() is not true, because (some) Close() happen before Open().

The problem is, that Open()→Close() is a global fact for the whole program; what we would
like to verify, however, is that the happens-before property is true within a certain context: inside
a single iteration, Open()→Close() holds.

A schedule analysis that computes context-dependent, directional scheduling information
must therefore take the program flow, execution context, and possibly runtime values into ac-
count. This is similar to dependent type systems [47, 82] or polyhedral analysis [19].

For example, by extending the schedule analysis with a notion of loop context n the schedule
analysis may be able to deduce the following fact:
∀n with n > 0 ∶Close()n−1→Open()n∧Open()n→Close()n
This expression states that in every nth iteration (other than the first), the Close() task created

in the previous iteration n−1 happens-before the Open() task created in the nth iteration and the
current Open() task happens before the Close() task of the same iteration. Adding such context
sensitivity would require substantial changes to both the model and the analysis presented in this
dissertation.

Task ordering for tasks that were read from fields: The schedule analysis presented in this
dissertation is able to analyze→-statements that reference tasks that were passed as parameters.
This ability to analyze the now happens-before later pattern provides much of the additional
flexibility the schedule analysis allows compared to analyses of syntactic fork/join style paral-
lelism. The schedule analysis loses all of its precision, however, when happens-before relations
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are created between tasks that have been read from fields. In this case, we conservatively over-
approximate the parallelism by simply ignoring the effects of the happens-before edge.

One future direction could be to identify cases where happens-before edges can improve the
analysis result even if tasks were read from fields. This would probably require the schedule
analysis to be based on more detailed alias information. Another interesting direction could be
to embed a linear type system [35, 112] for task objects into an otherwise more traditional type
system to avoid aliasing of task objects altogether.

8.3 Task-aware program analyses and wellformed-ness
checks

This dissertation focusses on using schedule analysis for optimizations. However, it is an open
research question whether scheduling information can also help with improving or enabling
other program analyses and verification.

Improving existing analyses As an example, consider a traditional escape analysis that com-
putes a relation escapes(ob ject,task). An object escapes a task if it is passed to the task, if the
task may stores the object in a global field, if the task passes the object to another task, or if the
object is reachable through an escaping object.

A scheduling-aware variant of an escape analysis could improve the precision by computing
escapes( f romTask,ob ject,toTask). Imagine multiple parallel worker tasks that are scheduled
before a common join task where each worker task computes a result object that is passed
to the join task. The analysis will conflate the multiple worker task runtime objects into a
single analysis-time object. A traditional escape analysis would deduce that the result object
escapes the worker task (because it is passed to join) and that multiple tasks may access result
in parallel (because the analysis can not distinguish between the individual result objects). A
schedule-aware analysis, however, may be able to see that the result object never escapes from
one worker task to another but only to the join task. Increasing the precision of the escape
analysis may allow the compiler to decrease the precision of a—potentially computationally
very expensive—points-to analysis. We have implemented a prototype of a schedule-aware
escape analysis but we have not seen any significant improvement in the benchmarks. Future
work in that direction would be necessary to find if escape analysis (or other program analyses)
can effectively benefit from scheduling information.

Checking wellformed-ness of task schedules One common source of errors in parallel pro-
grams are deadlocks. [73] In programs that use tasks with explicit happens-before constraints,
deadlocks can not only arise from incorrectly using locks but also from circular happens-before
relations between two or more tasks. In addition, the execution of a statement a→b can fail if
the task b on the right hand side is not guaranteed to be in the future (that is, if not now→b).
Section 3.7.1 called schedules that do not result in such scheduling conflicts well-formed.

Currently there exists no check that can (statically) decide whether a program execution
is guaranteed to result in a well-formed schedule. Having such a check would help the pro-
grammer to eliminate whole classes of scheduling errors already at compile time. Statically



126 CHAPTER 8. FUTURE DIRECTIONS

preventing deadlocks may require adding additional constraints to the model, such as disal-
lowing →-statements to reference variables that were read from fields, which would reduce the
flexibility of the programming model.

8.4 Integration with just-in-time compilers

The schedule analysis presented in this dissertation is a whole-program analysis and therefore
operates under a closed-world assumption. The schedule analysis is not a modular analysis—it
must inspect the method bodies and cannot simply operate on method interfaces—and therefore
requires knowledge about all classes that may be loaded at runtime. To some extend, the lack of
modularity is a problem inherent to parallel programs that work on shared memory. This prob-
lem manifests itself when a newly created thread brings down a parallel application that was
running perfectly fine before. Because the concurrent access to shared state breaks encapsula-
tion, the behavior of a parallel program can only be fully understood by looking at the whole
program.

However, while not being truly “modular” the schedule analysis is “additive” in the sense
that it analyses one class at a time, adding individual class-information to the final result. This
property makes it thinkable to perform a schedule analysis at runtime in a just-in-time compiler
(JIT). The JIT has full knowledge of what classes are currently loaded and therefore fulfills the
closed-world requirement.

The main concern when integrating schedule analysis with a JIT is runtime overhead. In
[67], Lee and Midkiff present a two-phase offline/online interprocedural and inter-task escape
analysis that pre-computes summary information at compile-time that is used in a fast but pre-
cise interprocedural analysis at runtime. Similar techniques could be applied to transform the
offline schedule analysis into an efficient online analysis that can be used in a JIT. For exam-
ple, the first steps of extracting the abstract schedule from the bytecode could be done by the
compiler and stored as a summary in the class file. The evaluation showed that the schedule
analysis itself has a relatively small overhead, especially when compared to the points-to anal-
ysis. We therefore expect that the feasibility of adding a schedule analysis to a JIT compiler
mostly depends on the quality and performance of available points-to analyses in JITs.

Assuming a JIT that includes a schedule analysis, the next open research question would be
efficient (but relatively infrequent) re-compilation of large portions of the code. Optimizations
of parallel programs can to affect many different parts of the code and are not necessarily local to
a single compilation unit. Take, for example, a single-threaded sequentially consistent program
in which all field and array accesses were optimized to work without memory fences. If during
execution this code loads a class that may start a parallel task, the schedule analysis would
notify the JIT that the single-threaded assumption is no longer correct. This may require the
JIT to re-compile many of the already loaded and compiled classes. There is a tradeoff between
too frequent re-compilation of large code portions and missed optimization opportunities in
programs with relatively stable task schedules.

The interplay of class unloading with the schedule analysis opens another possible research
direction. Class unloading occurs frequently in systems such as application servers that load
(and unload) user-provided plugins and generate classes on-the-fly. If class unloading is simply
ignored, the schedule analysis offers a conservative, but maybe unnecessarily imprecise result.
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On the other hand, if the JIT must perform a whole-program analysis after each unloading of
a class the analysis overhead may become unreasonably high. It is an open question which
tasks—if any—can be removed from the parallel() relation when a class is unloaded.





9
Conclusions

Fully utilizing the increasing number of cores in modern processors requires finer- and finer-
grained parallelism. Fine-grained parallelism is characterized by small tasks with only short
pieces of sequential code. Many powerful compiler optimizations for single-threaded code,
however, become ineffective when the sequential parts are too short. At the same time, new
parallelism-aware optimizations require knowledge about the task scheduling at runtime, but
this information is not available in current compilers.

This dissertation presents a programming model for parallel programs where explicit
happens-before constraints in the code define a partial ordering of the tasks. This model is
flexible enough to express a wide variety of structured and semi-structured parallelism features
present in current programming languages and parallelism libraries. As opposed to unstructured
threads, however, the proposed model contains enough ordering information to be susceptible
to static analysis.

For parallel programs that follow our task model, an optimizing compiler can apply the
schedule analysis developed in this dissertation to extract information about what tasks may
be executed concurrently and what tasks are always ordered. Together with points-to and es-
cape information, compiler optimizations can use the knowledge about task scheduling to judge
whether a transformation in one program point would conflict with another program point. If
the transformation may conflict with another part of the program, applying the optimization
could potentially change the program semantics and must therefore be prohibited.

In two case studies, we evaluate in detail how effectively optimizing compilers can exploit
scheduling information. In both cases, adding schedule analysis to the compiler significantly
improves the performance of the optimized programs. The results suggest that scheduling in-
formation is important for effective optimizing compilers.

In conclusion, this dissertation has shown that it is possible and beneficial to develop a
generic model of parallel execution and accompanying analyses. Instead of each project invent-
ing its own model of concurrency, we therefore propose an independent discipline of schedule
analysis. From this, we expect the same beneficial synergies for future parallel optimizations as
with the theory of points-to analysis, which allowed optimizations to focus on their optimization
problems instead of computing points-to sets.

We believe that static schedule analysis is a necessary step towards efficient next-generation
compilers for multicore systems.
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A
Datalog implementation

Variable the domain of variables. Variable contains all the allocation sites, formal
parameters, return values, thrown exceptions, cast operations, and derefer-
ences in the program.

Ob ject the domain of heap objects. Heap objects are named by the invocation sites
of object creation operations.

Field the domain of fields in the program. There is a special field elements to
denote an array access.

Method the domain of implemented methods in the program. It does not include
abstract or interface methods.

Selector the domain of virtual method names used in invocations.
BC the domain of bytecodes in the program.

Type the domain of types (classes and interfaces) in the program.
ParamPosition an integer domain representing possible parameter positions.

Figure A.1: The Datalog domains.

This appendix lists the code of the schedule analysis prototype implemented in Datalog. We
chose Datalog for the first prototype because it is a concise high-level specification language that
has been shown to be well-suited for data-flow analyses and scalable to even large real-world
programs [115].

The basis of Datalog are two-dimensional tables called relations. In a relation, the columns
are the attributes, each of which is associated with a finite domain defining the set of possible
values, and the rows are the tuples that are part of this relation. Figure A.1 shows the domains
that we use in the implementation of the schedule analysis.

If tuple (x,y,z) is in relation A, we say that predicate A(x,y,z) is true. A Datalog program
consists of a set of rules that compute new members of relations if the rule body is true. E.g.,
the rule:
D(w, z) :- A(w, x), B(x, y), !C(y, z).

says that “tuple (w,z) is added to D if A(w,x), B(x,y), and not C(y,z) are all true.” The Datalog
runtime will apply rules until a fixed point has been reached and no more tuples can be added
to the relations.

Before the analysis (implemented as a Datalog program) starts, a pre-processor extracts
information about the analyzed program and generates input tuples that can be read by Datalog.
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This set of initial tuples is called the extensional database. The pre-processor generates many
different relations encoding information about type hierarchies, virtual method calls, object
creation, and more.

A.1 Extensional database

The extensional database consists of relations that are extracted from the program by a pre-
processor and that function as the input to the subsequent Datalog programs. The most im-
portant relations contain the information about what method contains what statements and the
variables that are accessed by each statement. Because Java is a strongly typed language, addi-
tional relations model the type hierarchy of the analyzed program.

Type information is used to filter variables (e.g., when passing an actual variable v1 into a
formal parameter p or for the implicit this). Type-based filtering improves the precision by
ruling out spurious aliasing.
#**********************
#Root methods of the
#program
#**********************
roots (method:Method) input

#**********************
#Program statements
#**********************
new (m:Method, dest:Variable, obj:Object) input
schedule (m:Method, bc:BC, dest:Variable, obj:Object, name:Selector) input
now (m:Method, variable:Variable) input
constant (m:Method, variable:Variable, object:Object) input
load (m:Method, variable:Variable, base:Variable, field:Field) input
primLoad (m:Method, base:Variable, field:Field) input
staticLoad (m:Method, dest:Variable, field:Field) input
staticPrimLoad (m:Method, field:Field) input
store (m:Method, base:Variable, field:Field, source:Variable) input
primStore (m:Method, base:Variable, field:Field) input
staticStore (m:Method, field:Field, source:Variable) input
staticPrimStore (m:Method, field:Field) input
assign (m:Method, dest:Variable, source:Variable) input
arrow (m:Method, lhs:Variable, rhs:Variable) input
methodReturn (m:Method, var:Variable) input
methodThrow (m:Method, var:Variable) input

#**********************
#Monitor enter/exit
#**********************
monitorEnter (m:Method, variable:Variable) input
monitorExit (m:Method, variable:Variable) input

#**********************
#Type information
#**********************
variableType (method:Method, variable:Variable, type:Type) input
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objectType (object:Object, type:Type) input
#NOTE: assignable must be a flattened hierarchy already, including same-type
assignable (supertype:Type, subtype:Type) input
member (type:Type, name:Selector, target:Method) input

#**********************
#Intra-procedural
#control flow
#**********************
actual (method:Method, invokeBC:BC, param:ParamPosition, var:Variable) input
formal (method:Method, param:ParamPosition, var:Variable) input

#call sites
staticClassInvoke (m:Method, invokeBC:BC, target:Method) input
staticInstanceInvoke (m:Method, invokeBC:BC, target:Method) input
virtualInvoke (m:Method, invokeBC:BC, name:Selector) input
callSiteReturn (m:Method, invokeBC:BC, var:Variable) input

#**********************
#Exception handling
#**********************
#we catch all exceptions by type that can be assigned to var;
catch (m:Method, var:Variable) input

A.2 Rules for the task-sensitive points-to analysis

The points-to analysis is a slightly modified version of the points-to analysis described by Wha-
ley and Lam [115]. It is a flow-context insensitive analysis with on-the-fly call graph discovery
that uses a 1-call-site and 1-task context sensitivity.

With this sensitivity, an object is always represented as a tuple [objCtxt, obj] where the
second element obj represents the creation site (that is, the new-statement or the schedule-
statement) of the object whereas objCtxt represents the creation site of the this-object that
executes the new or schedule-statement. In addition, each execution context names the corre-
sponding task object. Because the task object is a normal object, it, too, is represented as a
[objCtxt, obj] tuple.

For example, in the clause executionContext(nowCtxt, now, thisCtxt, this, m), the tuple
[nowCtxt, now] represents the (contextualized) task object in which method m is executed and
[thisCtxt, this] represents the (contextualized) receiver of m.
#****************************
#The result relations of the
#points-to analysis
#****************************
#in task [nowCtxt,now], variable v1 of method [thisCtxt,this].m() points to [objCtxt,obj]
variablePT (nowCtxt:Object, now:Object, \

thisCtxt:Object, this:Object, \
method:Method, v1:Variable, \
objCtxt:Object, object:Object) output

#in the heap, [baseCtxt, base].f -> [targetCtxt, target]
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heapPT (baseCtxt:Object, base:Object, \
field:Field, \
targetCtxt:Object, target:Object) output

#in method [callerThisCtxt,callerThis].callerMethod() executed in [callerNowCtxt,callerNow],
#bytecode invokeBC is a call to
#method [calledThisCtxt,calledThis].calledMethod executed in [calledNowCtxt,calledNow].
#in the end, invocationEdge() represents the context-sensitive call graph
invocationEdge (callerNowCtxt:Object, callerNow:Object, \

callerThisCtxt:Object, callerThis:Object, \
callerMethod:Method, invokeBC:BC, \
calledNowCtxt:Object, calledNow:Object, \
caledThisCtxt:Object, calledThis:Object, calledMethod:Method) output

#**********************
#execution scope
#**********************
#method m on receiver [thisCtxt,this] is executed in task [nowCtxt,now];
#the execution context is just a projection of the invocationEdge relation to simplify some things
executionContext(nowCtxt:Object, now:Object, \

thisCtxt:Object, this:Object, \
m:Method)

executionContext(calledNowCtxt, calledNow, calledThisCtxt, calledThis, calledM) :- \
invocationEdge(_, _, _, _, _, _, calledNowCtxt, calledNow, calledThisCtxt, calledThis,

calledM).

#**********************
#Root
#**********************
executionContext(0, 0, 0, 0, m) :- \

roots(m).

#**********************
#type filtering
#**********************
canPointTo(method:Method, variable:Variable, object:Object)
canPointTo(m, v, obj) :- \

variableType(m, v, varType), \
objectType(obj, objType), \
assignable(varType, objType). split

#**********************
#new statements
#**********************
#two options: we could use "this" or "now" as the context for the new object
variablePT(nowCtxt, now, thisCtxt, this, m, v, alsoThis, obj) :- \

executionContext(nowCtxt, now, thisCtxt, this, m), \
new(m, v, obj), \
this=alsoThis. split

#**********************
#schedule statement
#**********************
variablePT(nowCtxt, now, thisCtxt, this, m, v, alsoNow, obj) :- \
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executionContext(nowCtxt, now, thisCtxt, this, m), \
schedule(m, _, v, obj, _), \
now=alsoNow. split

#**********************
#now statement
#**********************
variablePT(nowCtxt, now, thisCtxt, this, m, v, alsoNowCtxt, alsoNow) :- \

executionContext(nowCtxt, now, thisCtxt, this, m), \
now(m, v), \
nowCtxt=alsoNowCtxt, \
now=alsoNow. split

#**********************
#constants
#**********************
#two options: we could use "this" or "now" as the context for the new object
variablePT(nowCtxt, now, thisCtxt, this, m, v, 0, obj) :- \

executionContext(nowCtxt, now, thisCtxt, this, m), \
constant(m, v, obj). split

#**********************
#assignments;
#**********************
variablePT(nowCtxt, now, thisCtxt, this, m, v1, objCtxt, obj) :- \

executionContext(nowCtxt, now, thisCtxt, this, m), \
assign(m, v1, v2), \
variablePT(nowCtxt, now, thisCtxt, this, m, v2, objCtxt, obj), \
canPointTo(m, v1, obj). split

#**********************
#loads;
#**********************
variablePT(nowCtxt, now, thisCtxt, this, m, v2, targetCtxt, target):- \

executionContext(nowCtxt, now, thisCtxt, this, m), \
load(m, v2, v1, f), \
variablePT(nowCtxt, now, thisCtxt, this, m, v1, baseCtxt, base), \
heapPT(baseCtxt, base, f, targetCtxt, target), \
canPointTo(m, v2, target). split

#**********************
#static loads;
#**********************
variablePT(nowCtxt, now, thisCtxt, this, m, v, targetCtxt, target):- \

executionContext(nowCtxt, now, thisCtxt, this, m), \
staticLoad(m, v, f), \
heapPT(0, 0, f, targetCtxt, target), \
canPointTo(m, v, target). split

#**********************
#stores;
#**********************
heapPT(baseCtxt, base, f, targetCtxt, target):- \

executionContext(nowCtxt, now, thisCtxt, this, m), \
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store(m, v1, f, v2), \
variablePT(nowCtxt, now, thisCtxt, this, m, v1, baseCtxt, base), \
variablePT(nowCtxt, now, thisCtxt, this, m, v2, targetCtxt, target). split

#**********************
#static stores;
#**********************
heapPT(0, 0, f, targetCtxt, target):- \

executionContext(nowCtxt, now, thisCtxt, this, m), \
staticStore(m, f, v), \
variablePT(nowCtxt, now, thisCtxt, this, m, v, targetCtxt, target). split

#**********************
#static calls
#**********************
#statically bound instance methods
invocationEdge(nowCtxt, now, thisCtxt, this, m, invokeBC, alsoNowCtxt, alsoNow, calledThisCtxt,

calledThis, calledM) :- \
executionContext(nowCtxt, now, thisCtxt, this, m), \
staticInstanceInvoke(m, invokeBC, calledM), \
actual(m, invokeBC, 0, recVar), \
variablePT(nowCtxt, now, thisCtxt, this, m, recVar, calledThisCtxt, calledThis), \
nowCtxt=alsoNowCtxt, \
now=alsoNow. split

#statically bound class methods (do not use actual variable but the global object)
invocationEdge(nowCtxt, now, thisCtxt, this, m, invokeBC, 0, 0, 0, 0, calledM) :- \

executionContext(nowCtxt, now, thisCtxt, this, m), \
staticClassInvoke(m, invokeBC, calledM). split

#**********************
#virtual calls
#**********************
invocationEdge(nowCtxt, now, thisCtxt, this, m, invokeBC, alsoNowCtxt, alsoNow, calledThisCtxt,

calledThis, calledM) :- \
executionContext(nowCtxt, now, thisCtxt, this, m), \
virtualInvoke(m, invokeBC, selector), \
actual(m, invokeBC, 0, recVar), \
variablePT(nowCtxt, now, thisCtxt, this, m, recVar, calledThisCtxt, calledThis), \
objectType(calledThis, t), \
member(t, selector, calledM), \
nowCtxt=alsoNowCtxt, \
now=alsoNow. split

#**********************
#schedule statements
#**********************
invocationEdge(nowCtxt, now, thisCtxt, this, m, invokeBC, alsoNow, calledNow, calledThisCtxt,

calledThis, calledM) :- \
executionContext(nowCtxt, now, thisCtxt, this, m), \
schedule(m, invokeBC, _, calledNow, selector), \
actual(m, invokeBC, 0, recVar), \
variablePT(nowCtxt, now, thisCtxt, this, m, recVar, calledThisCtxt, calledThis), \
objectType(calledThis, t), \



A.3. RULES FOR THE TASK-SENSITIVE ESCAPE ANALYSIS 147

member(t, selector, calledM), \
now=alsoNow. split

#**********************
#parameter passing
#**********************
variablePT(calledNowCtxt, calledNow, calledThisCtxt, calledThis, calledM, formalVar, objCtxt, obj) :- \

invocationEdge(nowCtxt, now, thisCtxt, this, m, invokeBC, calledNowCtxt, calledNow,
calledThisCtxt, calledThis, calledM), \

formal(calledM, z, formalVar), \
actual(m, invokeBC, z, actualVar), \
variablePT(nowCtxt, now, thisCtxt, this, m, actualVar, objCtxt, obj). split

#**********************
#returns
#**********************
variablePT(nowCtxt, now, thisCtxt, this, m, callerRetVar, objCtxt, obj) :- \

invocationEdge(nowCtxt, now, thisCtxt, this, m, invokeBC, calledNowCtxt, calledNow,
calledThisCtxt, calledThis, calledM), \

callSiteReturn(m, invokeBC, callerRetVar), \
methodReturn(calledM, retVar), \
variablePT(calledNowCtxt, calledNow, calledThisCtxt, calledThis, calledM, retVar, objCtxt,

obj), \
canPointTo(m, callerRetVar, obj). split

#**********************
#exceptions
#**********************
variablePT(nowCtxt, now, thisCtxt, this, m, caughtExcVar, excCtxt, excObj) :- \

executionContext(nowCtxt, now, thisCtxt, this, m), \
catch(m, caughtExcVar), \
methodThrow(throwingM, thrownExcVar), \
variablePT(_, _, _, _, throwingM, thrownExcVar, excCtxt, excObj), \
canPointTo(m, caughtExcVar, excObj). split

A.3 Rules for the task-sensitive escape analysis

The escape analysis first collects escaping variables. A variable v in a method m escapes if v

is used as an actual parameter in a schedule-statement; if it is used as an actual parameter for
a formal parameter that escapes; or if it is stored in a static field. In a second step, the escape
analysis collects all escaping objects, starting from the objects referenced by escaping variables
and recursively adding all objects that can be reached by an escaping object.

In addition to the escapesTask() relation, the escape analysis computes a taskReaches()

relation that can be used by subsequent analyses and optimizations. taskReaches() collects all
nodes in the call graph that can be reached from each task entry point.

#**********************
#escaping variables
#**********************
#variable v in m escapes if it reaches a schedule statement or



148 APPENDIX A. DATALOG IMPLEMENTATION

#a static store directly in m or through method calls
varEscapes(_, _, _, _, m, v) :- \

schedule(m, invokeBC, _, _, _), \
actual(m, invokeBC, _, v).

varEscapes(_, _, _, _, m, v) :- \
staticStore(m, _, v).

varEscapes(nowCtxt, now, thisCtxt, this, m, v2) :- \
assign(m, v1, v2), \
varEscapes(nowCtxt, now, thisCtxt, this, m, v1). split

varEscapes(nowCtxt, now, thisCtxt, this, m1, v1) :- \
invocationEdge(nowCtxt, now, thisCtxt, this, m1, invokeBC, _, _, receiverCtxt, receiver, m2

), \
!schedule(m1, invokeBC, _, _, _) \
actual(m1, invokeBC, n, v1), \
formal(m2, n, v2), \
varEscapes(nowCtxt, now, receiverCtxt, receiver, m2, v2). split

#**********************
#escaping from a task
#**********************
#params flowing into the task are considered escaped
escapesTask(nowCtxt, now, thisCtxt, this, objCtxt, obj) :- \

invocationEdge(creatorNowCtxt, creatorNow, creatorThisCtxt, creatorThis, m1, invokeBC,
nowCtxt, now, thisCtxt, this, _), \

schedule(m1, invokeBC, _, _, _), \
actual(m1, invokeBC, _, v), \
variablePT(creatorNowCtxt, creatorNow, creatorThisCtxt, creatorThis, m1, v, objCtxt, obj).

split

#everything that escapes from the inside is escaped
escapesTask(nowCtxt, now, thisCtxt, this, objCtxt, obj) :- \

invocationEdge(_, _, _, _, m1, invokeBC, nowCtxt, now, thisCtxt, this, m2), \
schedule(m1, invokeBC, _, _, _), \
varEscapes(nowCtxt, now, thisCtxt, this, m2, v), \
variablePT(nowCtxt, now, thisCtxt, this, m2, v, objCtxt, obj). split

#everything that is reachable through an escaped object escapes
escapesTask(nowCtxt, now, thisCtxt, this, objCtxt2, obj2) :- \

escapesTask(nowCtxt, now, thisCtxt, this, objCtxt1, obj1), \
heapPT(objCtxt1, obj1, _, objCtxt2, obj2). split

#**********************
#reachability from task
#methods to nodes in
#the call graph
#**********************
taskReaches(nowCtxt, now, thisCtxt, this, alsoThisCtxt, alsoThis, m) :- \

invocationEdge(_, _, _, _, m1, invokeBC, nowCtxt, now, thisCtxt, this, m), \
schedule(m1, invokeBC, _, _, _), \
thisCtxt=alsoThisCtxt, \
this=alsoThis. split
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taskReaches(nowCtxt, now, thisCtxt, this, calledThisCtxt2, calledThis2, m2) :- \
taskReaches(nowCtxt, now, thisCtxt, this, calledThisCtxt1, calledThis1, m1), \
invocationEdge(nowCtxt, now, calledThisCtxt1, calledThis1, m1, invokeBC, _, _,

calledThisCtxt2, calledThis2, m2), \
!schedule(m1, invokeBC, _, _, _). split

A.4 Rules for the schedule analysis

The Datalog implementation of the schedule analysis expects that the loop-contextualized task-
ordering graph for each task method has been extracted beforehand (see Section 4.2.2). Due to
the restricted expressiveness of Datalog, the loop-contextualized task-ordering graph extraction
had to be implemented in Java and is therefore not presented here. The domains A0 and A1

range over all task variables. Relations that result from this intermediate processing step use the
postfix 0.

#************************************
#loop-contextualized task-ordering
#graph
#************************************
schedules0(nowCtxt:Object, now:Object, var:A0, resNowCtxt:Object, resNow:Object)
actual0(nowCtxt:Object, now:Object, var:A0, p:ParamPosition, val:A1)
formal0(nowCtxt:Object, now:Object, p:ParamPosition, var:A0)
arrow0(nowCtxt:Object, now:Object, lhs:A0, rhs:A1)

singleton0(nowCtxt:Object, now:Object, a:A0, b:A1)
ordered0(nowCtxt:Object, now:Object, a:A0)
multiple0(nowCtxt:Object, now:Object, a:A0)

#************************************
#ordered-ness of tasks
#************************************

#there can be tasks that are only ordered (in ordered0) but not orderedBefore. mix those into the
ordered relation

ordered(nowCtxt:Object, now:Object, a:A0, b:A1)
ordered(nowCtxt, now, a, alsoA) :-

ordered0(nowCtxt, now, a), a=alsoA.
ordered(nowCtxt, now, a, b) :-

orderedBefore(nowCtxt, now, a, b).
ordered(nowCtxt, now, a, b) :-

orderedBefore(nowCtxt, now, b, a).
ordered(nowCtxt, now, a, b) :-

ordered(nowCtxt, now, b, a).

#************************************
#infos about parameter flows
#************************************

#in nowCtxt.now, actual is a direct parameter to a and mapped to formal in a’s task resNowCtxt.resNow
param(nowCtxt:Object, now:Object, a:A0, actual:A1, resNowCtxt:Object, resNow:Object, formal:A2)
param(nowCtxt, now, a, actual, resNowCtxt, resNow, formal) :- \
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actual0(nowCtxt, now, a, n, actual), \
schedules0(nowCtxt, now, a, resNowCtxt, resNow), \
formal0(resNowCtxt, resNow, n, formal).

#used in negations, where you cannot really use _ (bug in bddbddb? or some concept I don’t understand?)
isParam(nowCtxt:Object, now:Object, a:A0, param:A1)
isParam(nowCtxt, now, a, actual) :-

param(nowCtxt, now, a, actual, _, _, _).

#in t, b is the parameter or ordered after the parameter that is mapped to formal in ta
paramOrAfter(nowCtxt:Object, now:Object, a:A0, b:A1, resNowCtxt:Object, resNow:Object, formal:A2)
paramOrAfter(nowCtxt, now, a, actual, resNowCtxt, resNow, formal) :- \

param(nowCtxt, now, a, actual, resNowCtxt, resNow, formal).
paramOrAfter(nowCtxt, now, a, after, resNowCtxt, resNow, formal) :- \

param(nowCtxt, now, a, actual, resNowCtxt, resNow, formal), \
orderedBefore(nowCtxt, now, actual, after).

isParamOrAfter(nowCtxt:Object, now:Object, a:A0, b:A1)
isParamOrAfter(nowCtxt, now, a, b) :-

paramOrAfter(nowCtxt, now, a, b, _, _, _).

paramOrBefore(nowCtxt:Object, now:Object, a:A0, b:A1, resNowCtxt:Object, resNow:Object, formal:A2)
paramOrBefore(nowCtxt, now, a, actual, resNowCtxt, resNow, formal) :- \

param(nowCtxt, now, a, actual, resNowCtxt, resNow, formal).
paramOrBefore(nowCtxt, now, a, before, resNowCtxt, resNow, formal) :- \

param(nowCtxt, now, a, actual, resNowCtxt, resNow, formal), \
orderedBefore(nowCtxt, now, before, actual).

isParamOrBefore(nowCtxt:Object, now:Object, a:A0, b:A1)
isParamOrBefore(nowCtxt, now, a, b) :-

paramOrBefore(nowCtxt, now, a, b, _, _, _).

#************************************
#tasks not ordered computation
#************************************

children(nowCtxt:Object, now:Object, resNowCtxt:Object, resNow:Object)
children(nowCtxt, now, resNowCtxt, resNow) :- \

schedules0(nowCtxt, now, _, resNowCtxt, resNow).
children(nowCtxt, now, resNowCtxt2, resNow2) :- \

children(nowCtxt, now, resNowCtxt1, resNow1), \
children(resNowCtxt1, resNow1, resNowCtxt2, resNow2).

contains(nowCtxt:Object, now:Object, a:A0, b:A1)
contains(nowCtxt, now, a, b) :-

schedules0(nowCtxt, now, a, _, _), \
schedules0(nowCtxt, now, b, _, _).

contains(nowCtxt, now, a, b) :-
formal0(nowCtxt, now, _, a), \
formal0(nowCtxt, now, _, b).

contains(nowCtxt, now, a, b) :-
schedules0(nowCtxt, now, a, _, _), \
formal0(nowCtxt, now, _, b).

contains(nowCtxt, now, a, b) :-
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contains(nowCtxt, now, b, a).

tasksNotOrderedBefore(nowCtxt:Object, now:Object, b:A0, resNowCtxt:Object, resNow:Object)
tasksNotOrderedBefore(nowCtxt, now, b, resNowCtxt, resNow) :- \

contains(nowCtxt, now, a, b), \
!singleton(nowCtxt, now, a, b), \
!orderedBefore(nowCtxt, now, a, b), \
schedules0(nowCtxt, now, a, resNowCtxt, resNow).

tasksNotOrderedBefore(nowCtxt, now, b, resNowCtxt, resNow) :- \
contains(nowCtxt, now, a, b), \
!singleton(nowCtxt, now, a, b), \
paramOrAfter(nowCtxt, now, a, b, nCA, nA, formal), \
tasksNotOrderedBefore(nCA, nA, formal, resNowCtxt, resNow).

tasksNotOrderedBefore(nowCtxt, now, b, resNowCtxt, resNow) :- \
contains(nowCtxt, now, a, b), \
!singleton(nowCtxt, now, a, b), \
!isParamOrAfter(nowCtxt, now, a, b), \
schedules0(nowCtxt, now, a, nCA, nA), \
children(nCA, nA, resNowCtxt, resNow).

tasksNotOrderedBefore(nowCtxt, now, b, resNowCtxt, resNow) :- \
schedules0(nowCtxt, now, b, nCB, nB), \
children(nCB, nB, resNowCtxt, resNow).

tasksNotOrderedAfter(nowCtxt:Object, now:Object, b:A0, resNowCtxt:Object, resNow:Object)
tasksNotOrderedAfter(nowCtxt, now, b, resNowCtxt, resNow) :- \

contains(nowCtxt, now, a, b), \
!singleton(nowCtxt, now, a, b), \
!orderedBefore(nowCtxt, now, b, a), \
schedules0(nowCtxt, now, a, resNowCtxt, resNow).

tasksNotOrderedAfter(nowCtxt, now, b, resNowCtxt, resNow) :- \
contains(nowCtxt, now, a, b), \
!singleton(nowCtxt, now, a, b), \
paramOrBefore(nowCtxt, now, a, b, nCA, nA, formal), \
tasksNotOrderedAfter(nCA, nA, formal, resNowCtxt, resNow).

tasksNotOrderedAfter(nowCtxt, now, b, resNowCtxt, resNow) :- \
contains(nowCtxt, now, a, b), \
!singleton(nowCtxt, now, a, b), \
!isParamOrBefore(nowCtxt, now, a, b), \
!orderedBefore(nowCtxt, now, b, a), \
schedules0(nowCtxt, now, a, nCA, nA), \
children(nCA, nA, resNowCtxt, resNow).

tasksNotOrdered(nowCtxt:Object, now:Object, b:A0, resNowCtxt:Object, resNow:Object)
tasksNotOrdered(nowCtxt, now, b, resNowCtxt, resNow) :- \

contains(nowCtxt, now, a, b), \
!singleton(nowCtxt, now, a, b), \
!ordered(nowCtxt, now, a, b), \
schedules0(nowCtxt, now, a, resNowCtxt, resNow).

tasksNotOrdered(nowCtxt, now, b, resNowCtxt, resNow) :- \
contains(nowCtxt, now, a, b), \
!singleton(nowCtxt, now, a, b), \
param(nowCtxt, now, a, b, nCA, nA, formal), \
tasksNotOrdered(nCA, nA, formal, resNowCtxt, resNow).
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tasksNotOrdered(nowCtxt, now, b, resNowCtxt, resNow) :- \
contains(nowCtxt, now, a, b), \
!singleton(nowCtxt, now, a, b), \
!isParam(nowCtxt, now, a, b), \
paramOrAfter(nowCtxt, now, a, b, nCA, nA, formal), \
tasksNotOrderedBefore(nCA, nA, formal, resNowCtxt, resNow).

tasksNotOrdered(nowCtxt, now, b, resNowCtxt, resNow) :- \
contains(nowCtxt, now, a, b), \
!singleton(nowCtxt, now, a, b), \
!isParam(nowCtxt, now, a, b), \
paramOrBefore(nowCtxt, now, a, b, nCA, nA, formal), \
tasksNotOrderedAfter(nCA, nA, formal, resNowCtxt, resNow).

tasksNotOrdered(nowCtxt, now, b, resNowCtxt, resNow) :- \
contains(nowCtxt, now, a, b), \
!singleton(nowCtxt, now, a, b), \
!isParam(nowCtxt, now, a, b), \
!isParamOrAfter(nowCtxt, now, a, b), \
!isParamOrBefore(nowCtxt, now, a, b), \
!orderedBefore(nowCtxt, now, b, a), \
schedules0(nowCtxt, now, a, nCA, nA), \
children(nCA, nA, resNowCtxt, resNow).

#**********************
#The main computation:
#parallel(task1, task2)
#**********************
parallel(nowCtxt1:Object, now1:Object, nowCtxt2:Object, now2:Object) output
parallel(nowCtxt1, now1, nowCtxt2, now2) :- \

schedules0(nC1, n1, a, nowCtxt1, now1), \
tasksNotOrdered(nC1, n1, a, nowCtxt2, now2).

#the next clause could be made a little more precise,
#if b is a param to a then b’s children are parallel only to all children
#of a that are not ordered before
parallel(nowCtxt1, now1, nowCtxt2, now2) :- \

contains(nC1, n1, a, b), \
!singleton(nC1, n1, a, b), \
schedules0(nC1, n1, a, nCA, nA), \
schedules0(nC1, n1, b, nCB, nB), \
children(nCA, nA, nowCtxt1, now1), \
children(nCB, nB, nowCtxt2, now2).

parallel(nowCtxt1, now1, nowCtxt2, now2) :- \
parallel(nowCtxt2, now2, nowCtxt1, now1).

A.5 Rules for the synchronization removal optimization

This section presents the rules of the synchronization removal optimization as an example for
how a concrete optimization can be implemented using the points-to, escape, and scheduling
information computed by the corresponding analyses.
#**********************
#interference of
#monitor enters
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#**********************
accessesMayInterfere(m1, v1, m2, v2) :- \

parallel(nowCtxt1, now1, nowCtxt2, now2), \
executionContext(nowCtxt1, now1, thisCtxt1, this1, m1), \
executionContext(nowCtxt2, now2, thisCtxt2, this2, m2), \
monitorEnter(m1, v1), \
monitorEnter(m2, v2), \
variablePT(nowCtxt1, now1, thisCtxt1, this1, m1, v1, objCtxt, obj), \
variablePT(nowCtxt2, now2, thisCtxt2, this2, m2, v2, objCtxt, obj), \
taskReaches(nowCtxt1, now1, actThisCtxt1, actThis1, thisCtxt1, this1, m1), \
escapesTask(nowCtxt1, now1, actThisCtxt1, actThis1, objCtxt, obj). split

#**********************
#filter dead monitor
#enters
#**********************
analyzedMonitorEnters(method:Method, variable:Variable) outputtuples printsize
analyzedMonitorEnters(m, v) :-

executionContext(_, _, _, _, m), \
monitorEnter(m, v).

#**********************
#required monitor enters
#**********************
requiredMonitorEnters(method:Method, variable:Variable) outputtuples printsize
requiredMonitorEnters(m, v) :-

analyzedMonitorEnters(m, v), \
accessesMayInterfere(m, v, _, _).

requiredMonitorEnters(m, v) :-
analyzedMonitorEnters(m, v), \
accessesMayInterfere(_, _, m, v).


