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• Can we remove synchronization for x, y?

4

task A task B
happens-before

�  Aliased!
� Ordered memory access✓

y.read();x.write();
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Motivation

• Compilers profit from static knowledge about 
runtime schedules

• Optimizations today must reinvent own analyses

• Our goal: factor out analysis of task schedules

• Simplification + integration of optimizations

• Additional knowledge of happens-before 
relationships increases optimization potential

5



Slide

Schedule Analysis Overview
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Outline

• Motivation

• Explicit Scheduling

• Genuine Edge Test

• Schedule Analysis

• Concluding Remarks
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Explicit Scheduling Model

• A program representation that:

• Contains explicit scheduling information

• Allows for static reasoning 

• General enough for structured (fork/join, Cilk, 
OpenMP) and unstructured parallelism (threads)

• Pre-processing step transforms traditional programs 
into programs with explicit scheduling
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Explicit Scheduling

• A task method is similar to a regular method:

• code that is executed in the context of this

• Instead of invoking a task method, one schedules it for 
later execution:

• Keyword now references currently executing activation

9

Activation b = schedule obj.bar(42);
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Explicit Scheduling (2)
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Explicit Scheduling (2)

• !-statement creates explicit happens-before 
relationship:
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Explicit Scheduling (2)

• !-statement creates explicit happens-before 
relationship:

• Implicit happens-before relationship between    
scheduling task and scheduled task

• Gives scheduling task time to add happens-before 
relationships

10

a ! b;
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class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}



Slide 11

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()



Slide 11

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()



Slide 11

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()

doWrite()



Slide 11

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()

doWrite()

doRead()



Slide 11

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()

doWrite()

doRead()



Slide 11

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doWrite()

doRead()



Slide

class MyClass {

task doRecursive(Activation later) {

//perform computation

if (more()) {

Activation next = 

schedule doRecursive(later);

next ! later;

}

}

}

12

doRecursive()
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Outline

• Motivation

• Explicit Scheduling

• Genuine Edge Test

• Schedule Analysis

• Concluding Remarks
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task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

15
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• An edge x ! y is genuine if activation 
of x implies edge has been created

Genuine Edges

16
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Types of Edges
• creation edges: A schedules B

• exclusive edges: C schedules either D or E

• explicit !-statement: F happens-before G
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Creation Tree

• Every activation is created by 
exactly one parent activation

• Creation Tree: a spanning tree 
embedded in schedule

• Useful property:

• Execution of child implies 
the completion of parent

• Creation edges are genuine

C

A

B

D E

G
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Computing Genuine Edges
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Outline

• Motivation

• Explicit Scheduling

• Genuine Edge Test 

• Schedule Analysis

• Concluding Remarks
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Schedule Analysis

Schedule Analysis Overview

22

Abstract Schedule 
Extraction

Program 
with Scheduling 

Information

Optimizations

Activation-sensitive 
Points-to Analysis
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Points-to Analysis

23

• Computes points-to sets for each program variable

• Activation-sensitive

• !-statements handled in Schedule Extraction phase

• Treats schedule statements as method calls

• Parameters are bound at schedule-time

• Flow-insensitive with respect to calls
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task A() {
T x = new T();
T y = random ? new T() : x;

Activation b = schedule B(x);
Activation c = schedule C(y);

b ! c;
}

Schedule Extraction

24
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Using Schedule Analysis

• Analyze programs that mix different parallelism 
styles:

• Threads, fork/join, intervals, ...

• Analyze programs that mix different synchronization:

• e.g., lock-based and STM in the same program 
[LCPC 2010]

• Optimizations directly profit from improvements of 
the schedule analysis

25
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Future compilers must understand 
the scheduling of tasks at runtime
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Conclusion

Future compilers must understand 
the scheduling of tasks at runtime
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Think “points-to-analysis” for 
schedules
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• What do do with that stuff now?

• cite lcpc (showed sync removal, in addition lcpc 
shows stm)

• think alias analysis for parallel programs

28
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Concluding Remarks

• now!later: simple abstraction to capture explicit 
scheduling constraints

• Used by programmer or as intermediate 
representation in compiler

• Explicit happens-before relationships enable static 
analysis of runtime schedules

• Schedule Analysis as basis for optimizations

• Integration in a single optimizing compiler

29
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• An edge x ! y is 
genuine if activation of x 
implies edge has been 
created:

  x ⇒ x ! y

{B, C}

Genuine Explicit Edges
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Conditional Edges

• Static analysis is imprecise

• Conditional activation

• Conditional creation of edges

• Question: can the analysis rely on a happens-before 
edge?

• If yes, we call the edge genuine

31
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Structural Properties

• Schedules must form a directed acyclic graph (DAG)

• For progress and liveness of activations

• Possible relations between two activations:

• sequential: execution is strictly ordered 

• exclusive: activations can never co-exist at runtime

• (potentially) parallel: neither sequential nor exclusive

32
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Related Work
• Pointer Analysis for Parallel Programs [Rugina, Rinard ’03]

• Interference information for fork/join parallelism

• Combined with Escape Analysis [Salcianu, Rinard ‘01], [Nanda, 
Ramesh ’03]

• Compute Points-to sets, no ordering

• May-happen-in-parallel [Naumovich et al. ’99]

• For X10 (structured parallelism)

• May-happen-before [Barik ’05]

• Happens-before relations in thread creation trees
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