
‘now’
‘happens-before’

‘later’

Christoph M. Angerer
Thomas R. Gross

ETH Zurich, Switzerland

Static Schedule Analysis with
Explicit Happens-before

Relationships

Slide

Example

3

Slide

Example

3

task A

synchronized(x) {
x.write();

}

Slide

synchronized(y) {
y.read();

}

Example

3

task A task B

synchronized(x) {
x.write();

}

Slide

synchronized(y) {
y.read();

}

Example

• Can we remove synchronization for x, y?

3

task A task B

synchronized(x) {
x.write();

}

Slide

synchronized(y) {
y.read();

}

Example

• Can we remove synchronization for x, y?

3

task A task B

synchronized(x) {
x.write();

}

� Different Objects✓

Slide

Example

• Can we remove synchronization for x, y?

3

task A task B

� Different Objects✓

y.read();x.write();

Slide

Example

• Can we remove synchronization for x, y?

4

task A task B

synchronized(x) {
x.write();

}

synchronized(y) {
y.read();

}

Slide

Example

• Can we remove synchronization for x, y?

4

task A task B

synchronized(x) {
x.write();

}

� Aliased!

synchronized(y) {
y.read();

}

Slide

Example

• Can we remove synchronization for x, y?

4

task A task B
happens-before

synchronized(x) {
x.write();

}

� Aliased!

synchronized(y) {
y.read();

}

Slide

Example

• Can we remove synchronization for x, y?

4

task A task B
happens-before

synchronized(x) {
x.write();

}

� Aliased!
� Ordered memory access✓

synchronized(y) {
y.read();

}

Slide

Example

• Can we remove synchronization for x, y?

4

task A task B
happens-before

� Aliased!
� Ordered memory access✓

y.read();x.write();

Slide

Motivation

• Compilers profit from static knowledge about
runtime schedules

• Optimizations today must reinvent own analyses

• Our goal: factor out analysis of task schedules

• Simplification + integration of optimizations

• Additional knowledge of happens-before
relationships increases optimization potential

5

Slide

Schedule Analysis Overview

6

Program
with Scheduling

Information

Optimizations

Schedule
Analysis

Slide

Outline

• Motivation

• Explicit Scheduling

• Genuine Edge Test

• Schedule Analysis

• Concluding Remarks

7

Slide

Explicit Scheduling Model

• A program representation that:

• Contains explicit scheduling information

• Allows for static reasoning

• General enough for structured (fork/join, Cilk,
OpenMP) and unstructured parallelism (threads)

• Pre-processing step transforms traditional programs
into programs with explicit scheduling

8

Slide

Explicit Scheduling

9

Slide

Explicit Scheduling

• A task method is similar to a regular method:

• code that is executed in the context of this

9

Slide

Explicit Scheduling

• A task method is similar to a regular method:

• code that is executed in the context of this

• Instead of invoking a task method, one schedules it for
later execution:

9

Activation b = schedule obj.bar(42);

Slide

Explicit Scheduling

• A task method is similar to a regular method:

• code that is executed in the context of this

• Instead of invoking a task method, one schedules it for
later execution:

• Keyword now references currently executing activation

9

Activation b = schedule obj.bar(42);

Slide

Explicit Scheduling (2)

10

Slide

Explicit Scheduling (2)

• !-statement creates explicit happens-before
relationship:

10

a ! b;

Slide

Explicit Scheduling (2)

• !-statement creates explicit happens-before
relationship:

• Implicit happens-before relationship between
scheduling task and scheduled task

• Gives scheduling task time to add happens-before
relationships

10

a ! b;

Slide 11

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

Slide 11

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()

Slide 11

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()

Slide 11

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()

doWrite()

Slide 11

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()

doWrite()

doRead()

Slide 11

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()

doWrite()

doRead()

Slide 11

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doWrite()

doRead()

Slide

class MyClass {

task doRecursive(Activation later) {

//perform computation

if (more()) {

Activation next =

schedule doRecursive(later);

next ! later;

}

}

}

12

doRecursive()

Slide

class MyClass {

task doRecursive(Activation later) {

//perform computation

if (more()) {

Activation next =

schedule doRecursive(later);

next ! later;

}

}

}

12

doRecursive()

later

Slide

class MyClass {

task doRecursive(Activation later) {

//perform computation

if (more()) {

Activation next =

schedule doRecursive(later);

next ! later;

}

}

}

12

doRecursive()

later

Slide

class MyClass {

task doRecursive(Activation later) {

//perform computation

if (more()) {

Activation next =

schedule doRecursive(later);

next ! later;

}

}

}

12

doRecursive()

later

Slide

class MyClass {

task doRecursive(Activation later) {

//perform computation

if (more()) {

Activation next =

schedule doRecursive(later);

next ! later;

}

}

}

12

doRecursive()

doRecursive()

later

Slide

class MyClass {

task doRecursive(Activation later) {

//perform computation

if (more()) {

Activation next =

schedule doRecursive(later);

next ! later;

}

}

}

12

doRecursive()

doRecursive()

later

Slide

class MyClass {

task doRecursive(Activation later) {

//perform computation

if (more()) {

Activation next =

schedule doRecursive(later);

next ! later;

}

}

}

12

doRecursive()

later

Slide

class MyClass {

task doRecursive(Activation later) {

//perform computation

if (more()) {

Activation next =

schedule doRecursive(later);

next ! later;

}

}

}

13

doRecursive()

later

Slide

class MyClass {

task doRecursive(Activation later) {

//perform computation

if (more()) {

Activation next =

schedule doRecursive(later);

next ! later;

}

}

}

13

doRecursive()

later

doRecursive()

Slide

class MyClass {

task doRecursive(Activation later) {

//perform computation

if (more()) {

Activation next =

schedule doRecursive(later);

next ! later;

}

}

}

13

later

doRecursive()

Slide

class MyClass {

task doRecursive(Activation later) {

//perform computation

if (more()) {

Activation next =

schedule doRecursive(later);

next ! later;

}

}

}

13

later

Slide

Outline

• Motivation

• Explicit Scheduling

• Genuine Edge Test

• Schedule Analysis

• Concluding Remarks

14

Slide

task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

15

Unreliable Edges

Slide

task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

15

Unreliable Edges

Slide

task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

15

a

b

Unreliable Edges

A()

B2()

B1()

Slide

task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

15

a

b

Unreliable Edges

A()

B2()

B1()

Slide

task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

15

a

b

Unreliable Edges

A()

B2()

B1()

Slide

task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

15

a

b

Unreliable Edges

unreliable
edge

A()

B2()

B1()

Slide

• An edge x ! y is genuine if activation
of x implies edge has been created

Genuine Edges

16

Slide

Types of Edges

17

Slide

Types of Edges
• creation edges: A schedules B

17

A

B

Slide

Types of Edges
• creation edges: A schedules B

• exclusive edges: C schedules either D or E

17

A

B

C

D E

Slide

Types of Edges
• creation edges: A schedules B

• exclusive edges: C schedules either D or E

• explicit !-statement: F happens-before G

17

A

B

C

D E

GF

Slide

Creation Tree

18

Slide

Creation Tree

• Every activation is created by
exactly one parent activation

18

Slide

Creation Tree

• Every activation is created by
exactly one parent activation

C

A

B

D E

G

18

Slide

Creation Tree

• Every activation is created by
exactly one parent activation

C

A

B

D E

G

18

Slide

Creation Tree

• Every activation is created by
exactly one parent activation

• Creation Tree: a spanning tree
embedded in schedule

C

A

B

D E

G

18

Slide

Creation Tree

• Every activation is created by
exactly one parent activation

• Creation Tree: a spanning tree
embedded in schedule

• Useful property:

• Execution of child implies
the completion of parent

• Creation edges are genuine

C

A

B

D E

G

18

Slide

Computing Genuine Edges

19

D

Y

E

...

A

{D, E}

CX

B

...

Slide

1. Mark all parents of x
(“the fence”)

Computing Genuine Edges

19

D

Y

E

...

A

{D, E}

CX

B

...

Slide

1. Mark all parents of x
(“the fence”)

2. Mark edge creators

Computing Genuine Edges

19

D

Y

E

...

A

{D, E}

CX

B

...

Slide

1. Mark all parents of x
(“the fence”)

2. Mark edge creators

3. Mark parent nodes

Computing Genuine Edges

19

D

Y

E

...

A

{D, E}

CX

B

...

Slide

1. Mark all parents of x
(“the fence”)

2. Mark edge creators

3. Mark parent nodes

Computing Genuine Edges

19

D

Y

E

...

A

{D, E}

CX

B

...

Slide

1. Mark all parents of x
(“the fence”)

2. Mark edge creators

3. Mark parent nodes

Computing Genuine Edges

19

D

Y

E

...

A

{D, E}

CX

B

...

Slide

1. Mark all parents of x
(“the fence”)

2. Mark edge creators

3. Mark parent nodes

4. Stop when a parent of x
is touched

Computing Genuine Edges

19

D

Y

E

...

A

{D, E}

CX

B

...

Slide

1. Mark all parents of x
(“the fence”)

2. Mark edge creators

3. Mark parent nodes

4. Stop when a parent of x
is touched

5. Else: edge not genuine

Computing Genuine Edges

19

D

Y

E

...

A

{D, E}

CX

B

...

Slide

1. Mark all parents of x
(“the fence”)

2. Mark edge creators

3. Mark parent nodes

4. Stop when a parent of x
is touched

5. Else: edge not genuine

Computing Genuine Edges

19

D

Y

E

...

A

{D, E}

CX

B

...

Slide

Outline

• Motivation

• Explicit Scheduling

• Genuine Edge Test

• Schedule Analysis

• Concluding Remarks

20

Slide

Schedule Analysis Overview

21

Program
with Scheduling

Information

Optimizations

Schedule
Analysis

Slide

Schedule Analysis

Schedule Analysis Overview

22

Program
with Scheduling

Information

Optimizations

Slide

Schedule Analysis

Schedule Analysis Overview

22

Abstract Schedule
Extraction

Program
with Scheduling

Information

Optimizations

Activation-sensitive
Points-to Analysis

Slide

Points-to Analysis

23

• Computes points-to sets for each program variable

• Activation-sensitive

• !-statements handled in Schedule Extraction phase

• Treats schedule statements as method calls

• Parameters are bound at schedule-time

• Flow-insensitive with respect to calls

Slide

task A() {
T x = new T();
T y = random ? new T() : x;

Activation b = schedule B(x);
Activation c = schedule C(y);

b ! c;
}

Schedule Extraction

24

Slide

task A() {
T x = new T();
T y = random ? new T() : x;

Activation b = schedule B(x);
Activation c = schedule C(y);

b ! c;
}

Schedule Extraction

24

x y

T T

Slide

task A() {
T x = new T();
T y = random ? new T() : x;

Activation b = schedule B(x);
Activation c = schedule C(y);

b ! c;
}

Schedule Extraction

24

A x y

T T

now

Slide

task A() {
T x = new T();
T y = random ? new T() : x;

Activation b = schedule B(x);
Activation c = schedule C(y);

b ! c;
}

Schedule Extraction

24

A

B

x y

T Tb c

C

now

Slide

task A() {
T x = new T();
T y = random ? new T() : x;

Activation b = schedule B(x);
Activation c = schedule C(y);

b ! c;
}

Schedule Extraction

24

A

B

x y

p

T Tb c

C
p

now

Slide

task A() {
T x = new T();
T y = random ? new T() : x;

Activation b = schedule B(x);
Activation c = schedule C(y);

b ! c;
}

Schedule Extraction

24

A

B

x y

p

T Tb c

C
p

now

Slide

task A() {
T x = new T();
T y = random ? new T() : x;

Activation b = schedule B(x);
Activation c = schedule C(y);

b ! c;
}

Schedule Extraction

24

A

B

x y

p

T Tb c

C
p

{A}

now

Slide

task A() {
T x = new T();
T y = random ? new T() : x;

Activation b = schedule B(x);
Activation c = schedule C(y);

b ! c;
}

Schedule Extraction

24

A

B

x y

p

T Tb c

C
p

{A}� Genuine✓

now

Slide

Using Schedule Analysis

25

Slide

Using Schedule Analysis

• Analyze programs that mix different parallelism
styles:

• Threads, fork/join, intervals, ...

25

Slide

Using Schedule Analysis

• Analyze programs that mix different parallelism
styles:

• Threads, fork/join, intervals, ...

• Analyze programs that mix different synchronization:

• e.g., lock-based and STM in the same program
[LCPC 2010]

25

Slide

Using Schedule Analysis

• Analyze programs that mix different parallelism
styles:

• Threads, fork/join, intervals, ...

• Analyze programs that mix different synchronization:

• e.g., lock-based and STM in the same program
[LCPC 2010]

• Optimizations directly profit from improvements of
the schedule analysis

25

Slide

Conclusion

Future compilers must understand
the scheduling of tasks at runtime

26

Slide

Conclusion

Future compilers must understand
the scheduling of tasks at runtime

26

Think “points-to-analysis” for
schedules

Slide

• What do do with that stuff now?

• cite lcpc (showed sync removal, in addition lcpc
shows stm)

• think alias analysis for parallel programs

28

Slide

Concluding Remarks

• now!later: simple abstraction to capture explicit
scheduling constraints

• Used by programmer or as intermediate
representation in compiler

• Explicit happens-before relationships enable static
analysis of runtime schedules

• Schedule Analysis as basis for optimizations

• Integration in a single optimizing compiler

29

Slide

{B, C}

Genuine Explicit Edges

B

Y

C

P

AX

30

Slide

• An edge x ! y is
genuine if activation of x
implies edge has been
created:

 x ⇒ x ! y

{B, C}

Genuine Explicit Edges

B

Y

C

P

AX

30

Slide

Conditional Edges

• Static analysis is imprecise

• Conditional activation

• Conditional creation of edges

• Question: can the analysis rely on a happens-before
edge?

• If yes, we call the edge genuine

31

Slide

Structural Properties

32

Slide

Structural Properties

• Schedules must form a directed acyclic graph (DAG)

• For progress and liveness of activations

32

Slide

Structural Properties

• Schedules must form a directed acyclic graph (DAG)

• For progress and liveness of activations

• Possible relations between two activations:

• sequential: execution is strictly ordered

• exclusive: activations can never co-exist at runtime

• (potentially) parallel: neither sequential nor exclusive

32

Slide

Related Work
• Pointer Analysis for Parallel Programs [Rugina, Rinard ’03]

• Interference information for fork/join parallelism

• Combined with Escape Analysis [Salcianu, Rinard ‘01], [Nanda,
Ramesh ’03]

• Compute Points-to sets, no ordering

• May-happen-in-parallel [Naumovich et al. ’99]

• For X10 (structured parallelism)

• May-happen-before [Barik ’05]

• Happens-before relations in thread creation trees

33

