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Abstract

Current compilers are still largely ignorant of the scheduling

of parallel tasks at runtime. Without this information, how-

ever, they have difficulties optimizing and verifying concur-

rent programs.

In this paper, we present a programming model where the

program contains explicit scheduling constraints in the form

of happens-before relationships between scheduled tasks.

This model allows for flexible and fine-grained ad hoc par-

allelism while still enabling us to statically extract an ab-

straction of the runtime schedule. The result of this schedule

analysis can answer the question as to whether two tasks ex-

ecute in sequence, exclusively, or in parallel with each other.

Categories and Subject Descriptors D.1.3 [Software]:

[Concurrent Programming]

General Terms Algorithms, Languages

1. Introduction

With the arrival of multicore systems, parallel programming

is becoming increasingly mainstream. Despite this, compil-

ers still remain largely ignorant of the task scheduling at run-

time. Absent this knowledge, however, a compiler is missing

important optimization and verification opportunities.

In a traditional thread model, the lifetime of a thread and

its dependencies on other threads are not stated explicitly;

rather, they come about as a side effect of executing low

level primitives such as signals and locks. For this reason,

it is hard for compilers to construct an approximation of the

runtime schedule.

Consider the following short Java method:
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void begin() {

this.a = new ThreadA(this);

this.b = new ThreadB(this);

a.start();

//other computations

b.start();

}

Without further information about the lifetime and syn-

chronization of threads a and b, a traditional compiler can-

not verify the absence of data races nor can it optimize the

parallel code.

One alternative to this unstructured parallelism is to

adopt specialized syntactic language features. Systems like

OpenMP [20] and Cilk [5, 21], for example, offer lexically

scoped fork-join style parallelism in place of ad hoc threads.

As a result, these systems are able to better approximate the

parallel control flow. Structured parallelism, however, comes

at the cost of flexibility, making it difficult to model common

patterns such as futures or producer-consumer.

In this paper, we propose a model with explicit task

scheduling that keeps the flexibility of threads and enables

static reasoning. Given two tasks, a schedule analysis can

answer the question whether the tasks are sequential, par-

allel, or exclusive. A compiler can use this information to

make parallelism-related decisions during verification and

optimization phases.

For representing concurrent programs, we introduce two

new primitives to a Java-like language. One primitive sched-

ules a new task and the other explicitly adds a happens-

before relationship between two scheduled tasks (Section 3).

When executing a program with explicit scheduling, the run-

time keeps track of the schedule. The schedule is represented

as a graph that exhibits specific structural properties (Section

4). These properties allow us to statically extract an approx-

imation of the runtime schedule (Section 5). We have imple-

mented a prototype and are working on integrating it with an

existing Java compiler framework (Section 6).

We build upon a large body of related work (Section 7) for

parallel program analysis to design a system that preserves

both flexible, unstructured control flow and static analysis of

the program schedule. To summarize, this paper makes the

following three contributions:



• We define a representation and execution model of paral-

lel programs with explicit happens-before relationships.

• We identify structural properties of abstract schedules.

• We describe an analysis to extract an abstract schedule

from a program that was written in or transformed into

our representation.

2. The Need for Schedule Analysis

Researchers have developed a wide variety of compiler opti-

mizations and verifications for parallel programs. Adapting

such optimizations to parallel programs, however, requires

information about what parts of the program might be exe-

cuted in parallel. The goal of a schedule analysis is to stat-

ically compute a mapping Task × Task → Relation to

answer the question of how two program tasks relate to each

other:

Sequential: Two tasks are sequential if their execution is

strictly ordered.

Exclusive: Two tasks are exclusive if they can never co-exist

in a single run of the program (e.g., they are scheduled in

different branches of a conditional statement).

Parallel: If two tasks are neither sequential nor exclusive,

they are considered (potentially) parallel.

Generally, the safe and conservative assumption is to

over-approximate the parallelism. As an example, take the

detection of data races. Two activations are allowed to write

to the same data if and only if they are sequentially ordered.

If the sequential execution cannot be guaranteed we must

assume that both tasks are potentially executed in parallel

and report a data race if they access the same data.

There are numerous examples for optimizations that re-

quire or benefit from scheduling information:

Synchronization Elimination aims at removing unneces-

sary synchronization constructs [22]. A synchronization

construct can be removed if all tasks that execute the crit-

ical section are sequentially ordered or exclusive.

Region-based Allocation optimizes garbage collection by

allocating all or some objects created during a (possi-

bly parallel) computation in a contiguous memory re-

gion [24]. The whole region is deallocated as a unit when

the computation finishes. To avoid dangling references,

however, the compiler must ensure that at the point of

de-allocation there are no more parallel tasks that might

use the memory.

Polyhedral Analysis tries to automatically introduce paral-

lelism that was not originally specified by the program-

mer [6]. Parallelism can be increased if, for example, a

compiler can show that a happens-before relationship be-

tween two tasks can be removed without introducing a

data race.

3. Explicit Task Scheduling

Our model is based on lightweight tasks with explicit

scheduling. Compared to traditional threads, explicit happens-

before relationships simplify the analysis of parallel program

schedules while avoiding the limitations of lexically scoped

parallelism.

The basic building block of our execution model is a task.

A task is similar to a method in that it contains code that

is executed in the context of a this-object (or the class,

in the case of static methods/tasks). Unlike a method,

however, one does not call a task, which would result in the

immediate execution of the body, but instead schedules it for

later execution.

As an example, consider a task t() that starts a long-

running computation compute() and schedules a task

print() that will print the result after the computation has

finished:

task t() {

Activation aPrint = sched(this.print());

Activation aCompute = sched(this.compute());

aCompute→aPrint;

}

A schedule is represented as a graph of 〈object, task()〉
pairs. The statement sched(this.print()), for example,

creates a new node with the this object and the print()

task and returns an object of type Activation representing

that node. Like any other object, Activation objects can

be kept in local variables, passed around as parameters, and

stored in fields.

At runtime, a scheduler constantly chooses activations

that are eligible for execution and starts them. The or-

der in which the scheduler is allowed to start the activa-

tions is specified by the edges in the schedule graph. If

the schedule contains a happens-before edge 〈o1, t1()〉 →
〈o2, t2()〉, the scheduler must guarantee that activation

〈o1, t1()〉 has finished execution before activation 〈o2, t2()〉
is started. The statement aCompute→aPrint creates an ex-

plicit happens-before relationship between the two activa-

tion objects aCompute and aPrint.

In the code, the currently executing activation can be

accessed through the keyword now. Whenever a new task

is scheduled, the scheduler automatically adds an initial

happens-before relationship between now and the new ac-

tivation node. Therefore, in the example the scheduler im-

plicitly creates two additional edges now→aCompute and

now→aPrint. These edges prevent the immediate execu-

tion of the new activations and enable the current task to add

additional constraints to the schedule before it finishes.

The above example works, as long as compute() does

not schedule new subtasks. If it does, however, the schedule

would not contain any happens-before edges between the

aPrint activation and those new activations. Therefore, the

scheduler would be allowed to execute aPrint before the



subtasks have finished, i.e. too early. However, there is no

place where we could create edges to prevent aPrint from

executing prematurely: In t() the subtasks have not yet been

created and inside compute() we are missing a reference to

aPrint.

To solve this we can pass the aPrint object as a param-

eter to the compute() task and use it to schedule the new

subtasks before aPrint:

task t() {

Activation aPrint = sched(this.print());

//pass a reference to aPrint:

Activation aCompute = sched(this.compute(aPrint));

aCompute→aPrint;

}

task compute(Activation later) {

Activation aSubtask =

sched(this.someSubtask(later));

//schedule our subtask before later

aSubtask→later;

}

In compute() we can pass the reference even further

along to aSubtask, thus allowing aSubtask (and its sub-

tasks, if there are any) to push the execution of the aPrint

activation further and further into the future until the whole

computation is finished. Once the subtasks terminate with-

out inserting new tasks, the scheduler will be able to execute

aPrint.

3.1 A Recursive Divide-and-Conquer Example

Figure 1 shows an example of a recursive divide-and-

conquer algorithm with explicit scheduling. The algorithm

sums the elements of an integer array by recursively divid-

ing the array into a left and a right half before computing

their sums. The base case of the recursion is reached for

sub-arrays of length 1, in which case the sum is trivial.

The class ArraySum is an implementation of this algo-

rithm. It defines two tasks: sum() divides the work between

two children and subtotal() adds their results. Figure 2

shows the changes in the schedule when ArraySum is started

with an array of length 3.

Initially, the schedule contains an activation 〈o1, sum()〉
for an ArraySum object o1 plus an activation 〈x, y()〉.
〈x, y()〉 is provided by the client of ArraySum to make use

of the result after the computation is finished. A reference

to 〈x, y()〉 is passed to sum() through the later param-

eter on line 8. In this schedule, the scheduler can choose

〈o1, sum()〉 because there are no other outstanding happens-

before relationships for that activation.

In the first iteration the array length is greater than 1,

which leads to the recursive case starting at line 12. In this

branch, we first schedule this.subtotal() on line 13. We

then add the happens-before relationship subtotal→later

on line 14, creating an edge between the nodes 〈o1, subtotal()〉

1 class ArraySum {

2 IntArray arr;

3 int result;

4 Activation left, right;

5

6 ArraySum(IntArray arr) { this.arr = arr; }

7

8 task sum(Activation later) {

9 if(arr.length() == 1) {

10 result = arr.getInt();

11 //end of this task

12 } else {

13 Activation subtotal = sched(this.subtotal());

14 subtotal→later;

15

16 left = new ArraySum(arr.leftHalf());

17 right = new ArraySum(arr.rightHalf());

18

19 sched(left.sum(subtotal))→subtotal;

20 sched(right.sum(subtotal))→subtotal;

21 }

22 }

23

24 task subtotal() {

25 result = ((ArraySum)left.obj()).result

26 + ((ArraySum)right.obj()).result;

27 //end of this task

28 }

29 }

Figure 1. Example of a recursive divide-and-conquer algo-

rithm with explicit scheduling.

and 〈x, y()〉. As shown in Figure 2, this edge defers the exe-

cution of 〈x, y()〉 until the subtotal is available.

Lines 16 and 17 split the input array into two halves

and pass them to two new instances of ArraySum. We store

references to both instances in the left and right fields so

that the subtotal() task can later read their result.

The subtasks left.sum() and right.sum() are sched-

uled on lines 19 and 20. By passing a reference to the

subtotal activation, the recursive child activations of

sum() can insert their own subtotal activations on line

14, preventing the parent’s subtotal from executing before

the children have finished.

The two scheduling statements add the nodes 〈o2, sum()〉
and 〈o3, sum()〉 to the schedule and bind their later pa-

rameter to the node 〈o1, subtotal()〉. This is shown in

Panel 2 of Figure 2. On the same lines 19 and 20, the

two new activations are also scheduled before subtotal,

thus creating the edges 〈o2, sum()〉→〈o1, subtotal()〉 and

〈o3, sum()〉→〈o1, subtotal()〉.
The scheduler can now choose either 〈o2, sum()〉 or

〈o3, sum()〉 for execution. 〈o2, sum()〉 hits the base case

because its array is of length 1. The base case of the recur-

sion on line 9 does not schedule any new tasks and does

not create any new happens-before edges, so the schedule
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Figure 2. Snapshots of the schedule during execution of the

example from Figure 1 for an array of length 3. Satisfied

happens-before relationships and already executed nodes are

grayed out. Black nodes are eligible for execution. Unfilled

nodes have unfulfilled scheduling constraints.

remains unchanged. The execution of 〈o3, sum()〉, on the

other hand, recursively activates three new tasks: two tasks

to compute the partial results and one task to add them.

Panel 3 of Figure 2 shows the state of the schedule af-

ter 〈o2, sum()〉 and 〈o3, sum()〉 have been executed. The

scheduler continues to execute 〈o4, sum()〉 and 〈o5, sum()〉
in any order and (because of the original array of length

3) both activations hit the base case and leave the sched-

ule unchanged. Therefore, the schedule can execute the

remaining linear chain consisting of 〈o3, subtotal()〉 and

〈o1, subtotal()〉 before continuing with the caller at 〈x, y()〉.

4. Structural Properties of Schedules

This section describes structural properties of schedules.

4.1 Well-formed Schedules

A well-formed schedule guarantees that the scheduler can al-

ways choose at least one activation for execution (progress)

and that every activation is eventually executed (liveness).

Both conditions require that the schedule is a directed

acyclic graph. A cycle in the schedule would result in a

deadlock where two activations block each other and pre-

vent progress. Assuming that the execution of a task always

terminates, an acyclic graph ensures that there is always at

least one node that has only incoming edges from already

executed activations.

Besides being acyclic, a well-formed schedule also re-

stricts the addition of new happens-before relationships. Be-

cause activations can be stored in fields, an activation object

may reference an activation that has already been executed.

task a(Activation later) {

  if(cond) {

    sched(this.b())→later;

  } else {

    sched(this.c())→later;

    sched(this.d())→later;

  }

  sched(this.e())→later;

}

a

b c d

later

e

Figure 3. An abstract schedule with a conditional activa-

tion. The arc groups the exclusive creation edges.

Imagine that one tries to add a happens-before relationship

a1→a2 after a2 has already been executed. The scheduler

has no chance of satisfying this edge; since a2 lies in the

past, the scheduler cannot retroactively execute anything be-

fore that.

To prevent such unresolvable scheduling conflicts, the

scheduler allows an edge a1→a2 to be added from within

an activation a0 only if there exists an edge a0→a2. This

edge ensures that a2 is scheduled after a0 and therefore is

still unexecuted at the time of the edge creation. It is not

necessary to require an edge a0→a1, however, because it

is not a problem if the source of a happens before edge has

already been executed.

4.2 Conditional Activation

Conditional control flow can result in a conditional activa-

tion of a task. The if statement on line 9 of Figure 1, for

example, results in three activations in the else branch but

none on the true branch.

At compile-time, the analysis generally cannot determine

which branch is executed at runtime. Therefore, all possible

executions must be taken into account. Two activations that

are created in different branches of a conditional statement

are exclusive because they cannot co-exist in the same run

of the program. Figure 3 shows an example where node b is

exclusive to both c and d but parallel to e. Nodes c and d are

parallel to each other as well as parallel to e. Graphically,

exclusive edges are connected by arcs.

4.3 Creation Tree

The scheduler implicitly adds an edge between the current

activation now and all the tasks it schedules. Those initial

edges are called creation edges. We depict creation edges

with double arrow heads. Because an activation has exactly

one creator, the creation edges form a spanning tree that is

embedded into the schedule.

The creation tree is a fundamental data structure that

enables many of the operations needed during the analysis.

Its importance comes from two basic properties:

1. If one activation x is the direct or indirect parent of

another activation y in the creation tree, it is guaranteed

that x always executes before y because x creates y.
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Figure 4. Marking nodes in the creation tree to test if x → y

is genuine. The fence is circled by the dotted line, marks are

shown as stars.

2. If x ։ y is a creation edge, the existence of the child

activation y implies the existence of its parent x, written

y ⇒ x. In fact, this relationship is transitive, thus im-

plying the existence of all parents up to the root of the

creation tree (the initial activation that started the pro-

gram). The inverse, however, is not true. Due to condi-

tional activations, one cannot deduce the existence of a

child activation simply from the existence of the parent.

4.4 Genuine Edges

The analysis uses the schedule and its embedded creation

tree to decide how two activations relate to each other.

Sequential Activations: If two nodes are connected by a

path in the schedule, their execution is ordered and there-

fore sequential. If there is no such path, the activations

are either exclusive or parallel.

Exclusive Activations: If we find that in the creation tree

two nodes are connected to their common ancestor by

conditional edges, the two activations are exclusive.

Parallel Activations: If two nodes are connected to their

common ancestor by parallel edges, the activations are

considered parallel.

Because happens-before relationships can be created con-

ditionally, many parts of the analysis only consider genuine

edges. A genuine edge x → y is an edge where the exis-

tence of the source node x implies that the edge exists, de-

noted x ⇒ x → y. Genuine edges are useful because we

know that if the node x executed at all, it executed before y.

Edges that are not genuine are ignored by the analysis, thus

over-approximating the parallelism.

To determine whether x ⇒ x → y we record all the

activations creators(x → y) that unconditionally create the

edge x → y. We can now rephrase the problem to check if

the existence of x implies the existence of at least one node

c that creates the edge: ∃c.x ⇒ c ∧ c ∈ creators(x → y).
This predicate can be approximated using the creation tree.

Figure 4 shows an example of a creation tree. We want to

compute whether the edge x → y is genuine. The algorithm

starts by marking the fence. The fence is comprised of all

the nodes from the edge source up to the root of the creation

tree. As described earlier, the existence of the fence nodes is

implied by the existence of x.

The goal is now, to check whether any node in the fence

implies the existence of any node that creates the edge x →
y. We do so by iteratively marking nodes, walking up the

creation tree, until we either mark a node in the fence, in

which case the edge is genuine, or no more nodes can be

marked, in which case the edge is not genuine.

The label on edge x → y in Figure 4 indicates that

the edge was created by activations a and b. Therefore, the

algorithm initially marks the nodes a and b and continues

with node 6 as the parent of a and b. Because all its exclusive

children were marked, and thus all possible execution paths

are covered, node 6 can be marked as well. The mark on 6 is

sufficient to further mark node 5 because node 6 was created

unconditionally.

In the example, node 4 cannot be marked because there is

a conditional unmarked sibling of node 5. Therefore, there is

a program execution that will create node x but not nodes a

or b and thus not the edge x → y. This concludes that x → y

is not genuine.

If the program was modified to create node 5 uncondi-

tionally, the algorithm would eventually mark the fence in

node 1, showing that x → y were genuine.

4.5 Recursion

Example 1 contains a recursive activation of the task sum()

on lines 19 and 20. It is important to detect recursion to pre-

vent infinite expansion of the creation tree during analysis.

In our framework, a recursion is detected as soon as an

activation of a task t() directly or indirectly causes the cre-

ation of another activation of the same task t(), but possi-

bly with different this-objects. Multiple occurrences of the

same task t() on an execution trace are not automatically

considered recursive, however. It is necessary that the recur-

sion is “self-induced”; the second activation of t() must be

a result from the first activation of t().

For example, a task s() could schedule o1.t() and

o2.t() and add a happens-before constraint between the

two. In this case, the execution of o2.t() is not considered

recursive even though it is executed after o1.t() because it

did not cause the activation of o1.t().

Given a node in the schedule, we can test for recursive

activation by walking up the creation tree. If the node rep-

resents a recursive activation of a task t(), the creation tree

will contain a parent with the same task t().

The analysis records recursive activations in the ab-

stract schedule by adding recursion edges. Recursion edges

are creation edges that are treated specially when testing

whether two nodes are exclusive or parallel.



Imagine an activation a that conditionally creates two

activations b and c. In the non-recursive case, b and c are

considered to be exclusive. If there is a recursion around a,

however, a might create b in the first iteration and c in the

second iteration. Because the analysis cannot distinguish the

individual iterations, it must assume that b and c are parallel.

5. Schedule Analysis

At the core of the schedule-driven analysis is a standard

points-to analysis for object-oriented programs such as the

analyses presented in [25] or [23]. The points-to information

is necessary because we need information about the target

object when a task is scheduled. Similarly, because activa-

tions are first-class objects, we need the pointer information

to compute the sources and targets of new happens-before

edges.

A points-to analysis is driven by the control-flow graph.

That is, the order in which nodes are visited and the paths

of the information flow are determined by the edges of the

CFG. In our schedule-driven analysis, the schedule graph

augments this (inter-procedural) role of the CFG for guid-

ing the analysis of parallel constructs. During analysis, the

schedule determines in what order the nodes are visited and

how information flows between them.

The interface between the points-to analysis and the

schedule analysis is an abstract heap: a data structure con-

taining the points-to information. For the schedule analysis,

the abstract heap is a largely opaque data structure that is

defined by the points-to analysis at hand. The schedule anal-

ysis requires methods for merging heaps and for querying a

heap to determine the points-to set for a given variable.

The analysis works by visiting each node in the abstract

schedule until a fixed point has been reached. Analyzing a

single node is done in three steps:

1. A heap abstraction is computed by combining the heaps

flowing into the node through the incoming edges.

2. The combined heap functions as the input to an incre-

mental pointer analysis; the result of this analysis is an

updated heap containing the new points-to information.

3. For non-recursive nodes, the points-to information is

used to find newly created activations and/or happens-

before edges and to incorporate them into the abstract

schedule. If the current node is a recursive activation,

however, we instead add a recursion edge that feeds back

the result heap and re-open the parent for analysis until a

fixed point has been reached.

5.1 Combining Incoming Heaps

The abstract heap at the beginning of an activation a must

approximate the effects of all the activations that, at runtime,

could execute before a. For sequential executions, the exe-

cution order is captured by the happens-before relationships

in the abstract schedule. The question is, therefore, what in-
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Figure 5. Schedule analysis of Example 1.

fluence can parallel activations have on the initial heap of

a?

As it turns out, parallel activations can be ignored if data

races are considered to be illegal and if we are willing to

‘lazily’ detect a data race not in the activations that are

directly involved but only in one of their successors. This

lazy approach is in contrast to other analyses that iteratively

reanalyze threads and update their interference information

until a fixed point is reached. For the rare cases where data

races should be deliberately allowed we can fall back to such

an iterative algorithm, however.

Imagine a special node exit that marks the end of the

program and happens after all other activations. Then there is

always at least one node c for any two unordered activations

a and b that happens after a and b: a →∗ c ∧ b →∗ c. Such

a join node c is the point where a data race detection can

find concurrent accesses to the same memory locations by

comparing the read/write sets of the parallel activations.

Therefore, we can simply assume the absence of data

races between a and b because this assumption will be veri-

fied later in c. If there is no data race, two activations cannot

interfere with each other. For this reason, while analyzing a

we can ignore all unordered activations b, c, . . . and derive

the abstract heap by combining only the heaps of the prede-

cessors connected to a by incoming edges.

5.2 Locks

Synchronizing an arbitrary number of concurrent tasks re-

quires an additional synchronization primitive such as mu-

texes, atomic compare-and-swap, or locks [11, p.37ff]. Inter-

task synchronization requires the analysis to compute the

fixed point for the implicit information flow between syn-

chronization points. For space reasons, we do not discuss

synchronization primitives but the analysis can be extended

to handle them.



5.3 Analysis of the Example

Figure 5 shows how the schedule analysis proceeds for the

example of Figure 1. The analysis is at the point where a

client has scheduled the sum() task with the abstract object

i1. The client further activated 〈i0, y()〉 to make use of

the result later. The relevant part of the abstract schedule is

shown in Panel 1 of Figure 5.

The analysis can start to analyze node 〈i1, sum()〉 be-

cause all the preceding nodes have been analyzed. The first

step of computing the initial heap is trivial, because there

is only one incoming edge. Therefore, we can immediately

start the points-to analysis.

Because this was the first time the points-to analysis was

started for this node, the resulting abstract heap will contain

the three new activations that were created on lines 13, 19,

and 20 of Figure 1. Panel 2 of Figure 5 shows the updated

abstract schedule after adding the new activation nodes and

the corresponding happens-before edges. It is also shown

that the later parameters of the two sum() activations are

both bound to the same 〈i1, subtotal()〉 node.

This finishes the analysis of the first node and the analysis

consults the schedule to see which node to analyze next. The

options are 〈i2, sum()〉 and 〈i3, sum()〉 because they are

the only nodes that have no unanalyzed predecessors. There

is only one incoming edge to either node and the points-to

analysis can be started immediately. Because for both nodes

we detect a recursion around sum(), we add recursion edges

as shown in Panel 3. This re-opens 〈i1, sum()〉 for analysis.

Back at node 〈i1, sum()〉, the recursion edges require the

analysis to merge the later parameter of the sum() tasks.

As shown in Panel 4, due to the recursion, later may point

to 〈i1, subtotal()〉 or 〈i0, y()〉.
There is more than one incoming edge to 〈i1, sum()〉;

thus we must combine the incoming heaps before we can

start the points-to analysis. Looking at the creation tree re-

veals that 〈i2, sum()〉 and 〈i3, sum()〉 are parallel. A data

race detection can verify that both tasks can safely run in

parallel because both activations access disjoint regions of

the array.

Having merged the heaps, the pointer analysis can be

restarted for node 〈i1, sum()〉. In this example, the heap

before the pointer analysis is equal to the heap returned by

the pointer analysis and we have found a fixed point.

There were no new nodes created, but checking for newly

created edges reveals that the statement subtotal→later

on line 14 results in an additional recursion edge from

〈i1, subtotal()〉 to itself because both variables subtotal

and latermay point to the same 〈i1, subtotal()〉. This loop

represents the chain of subtotal() activations that can oc-

cur at runtime.

Panel 5 of Figure 5 shows the state of the abstract sched-

ule after the sum() recursion has been analyzed. The analy-

sis proceeds with computing the fixed point for the recursive

node 〈i1, subtotal()〉 before finishing with node 〈i0, y()〉.

6. Prototype

We have implemented a prototype of the schedule analy-

sis. The prototype works on a simplified object-oriented lan-

guage and can be found at

http://github.com/chmaruni/XSched. We are now in

the process of integrating the analysis with the WALA Java

analysis library [28].

7. Related Work

The happens-before ordering was first formulated by Lam-

port [14] and is the basis of the Java memory model [15]. De-

spite its significance in the memory model, in Java happens-

before edges can be created only implicitly, for example by

using synchronized blocks or volatile variables.

The goal of a pointer analysis is to statically determine

when two pointer expressions refer to the same memory lo-

cation. Steengaard [26] and Andersen [2] laid the ground-

work for the flow-insensitive analysis of single threaded pro-

grams. Because points-to analysis is undecidable in the gen-

eral case, however, researchers developed a large collection

of approximation algorithms specialized for different prob-

lem domains [12], including parallel programming.

Rugina and Rinard [23] describe a pointer analysis for

programs with structured fork-join style concurrency. For

each program point, their algorithm computes a points-to

graph that maps each pointer to a set of locations. By captur-

ing the effects of pointer assignments for each thread, their

algorithm can compute the interference information between

parallel threads. Computing the interference information re-

lies on the lexical scoping of the parallel constructs; it cannot

handle unstructured parallelism.

By combining pointer and escape analysis, subsequent

projects were able to extend their analyses beyond structured

parallelism [18, 24]. Both analyses compute points-to infor-

mation but do not directly answer as to how two tasks are

executed with respect to each other. Further, the tight inte-

gration of the pointer analysis with the escape analysis and

concurrency analysis is contrary to our goal of separating the

concerns of schedule analysis from points-to analysis.

A may-happen-in-parallel (MHP) analysis can be used to

determine what statements in a program may be executed in

parallel [19]. Without flow sensitivity, relating two program

statements is of limited use for analyzing programs with

unstructured parallelism. If two threads execute the same

statements but in different contexts, for example, a context

insensitive MHP analysis might unnecessarily classify the

statements as parallel. When the programming language is

restricted to structured parallelism, as has been done for the

X10 programming language [1], an intra-procedural MHP

analysis can achieve good results, however.

Barik [3] describes a context and flow-sensitive may-

happen-before analysis that distinguishes threads by their

creation site. Barik introduces a ‘thread creation tree’, which

is closely related to our creation tree. By using threads as



their model, however, they must conservatively assume that

a parent thread in the tree runs in parallel with each child

thread. In our model a parent activation is known to happen

before any child activation because the creation tree is a

spanning tree embedded in the schedule.

As an alternative to data-flow analysis, many systems

apply techniques based on type theory and related for-

malisms for analyzing parallel programs. Among the many

approaches used are typestates [4], ownership types [7], ef-

fect systems [9, 16], and access permissions [27].

Actor-based systems [10, 13] avoid many synchroniza-

tion issues by removing the need for a global schedule alto-

gether. Actors are entities that communicate asynchronously

by sending and receiving messages to and from each other.

There is no restriction on the order in which messages arrive

and an actor has no direct control over the message passing

mechanism. This lack of synchronization requires the actor

model to avoid mutable shared state whereas our work is

based on a shared-memory model. Process calculi, such as

the join-calculus [8] and π-calculus [17], permit formal rea-

soning about systems with autonomous entities.

8. Concluding Remarks

Fully utilizing the increasing number of cores in modern pro-

cessors requires finer- and finer-grained parallelism. Fine-

grained parallelism is characterized by small tasks with only

short pieces of sequential code. Many powerful compiler op-

timizations for single-threaded code, however, become inef-

fective when the sequential parts are too short. At the same

time, new parallelism-aware optimizations require knowl-

edge about the task scheduling at runtime, but this informa-

tion is not available in current compilers.

Instead of each project inventing its own model of con-

currency, we propose an independent discipline of schedule

analysis. From this, we expect the same beneficial synergies

for future parallel optimizations as with the theory of points-

to analysis, which allowed optimizations to focus on their

optimization problems instead of computing points-to sets.

We believe that static schedule analysis is a necessary

step towards efficient next-generation compilers for multi-

core systems.
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