Static Analysis of

Dynamic Schedules

and its Application to Optimization of Parallel Programs

Christoph M. Angerer
Thomas R. Gross

ETH Zurich, Switzerland

Slide 2

synchronized(x) {
x.write();

¥

Slide 2

task A task B

synchronized(x) {

~ - synchronized(y) {
x.write(); . D y.read();
¥ ¥

Slide 2

® Can we remove synchronization for x, y?

task A task B

@

synchronized(x) { A~ - synchronized(y) {
U yereao;

x.write();

¥ ¥

Slide 2

® Can we remove synchronization for x, y?

task A task B

@

synchronized(x) { -~ - synchronized(y) {
U yereseo

x.write();

¥ ¥

V| Different Objects

Slide 2

® Can we remove synchronization for x, y?

task A task B

x.write(); . D y.read();

V| Different Objects

Slide 2

® Can we remove synchronization for x, y?

task A task B

o @

synchronized(x) { < synchronized(y) {
x.write(); D y.read();

¥ ¥

Slide 3

® Can we remove synchronization for x, y?

task A task B

.. o

synchronized(x) { < synchronized(y) {
x.write(); D y.read();

¥ ¥

Aliased

Slide 3

® Can we remove synchronization for x, y?

task A task B

<:::> happens-before

synchronized(x) { — synchronized(y) {
x.write(); D y.read();

¥ ¥

Aliased

Slide 3

® Can we remove synchronization for x, y?

task A task B

<:::> happens-before

synchronized(x) { — synchronized(y) {
x.write(); D y.read();

¥ ¥

X Aliased
V] Ordered memory access

Slide 3

® Can we remove synchronization for x, y?

task A task B

Q happens-before

x.write(); D y.read();

X Aliased
V] Ordered memory access

Slide 3

® Optimizations profit from static knowledge about
runtime schedules

® Optimizations today must reinvent own analyses
® Our goal: factor out analysis of task schedules
® Simplification + integration of optimizations

® Task ordering information increases optimization
potential

Slide 4

Schedule Analysis Overview

Program
with Scheduling
Information

NYel g =Ya [U] (=
Analysis

Optimizations

Slide 5

Motivation

Explicit Scheduling

Schedule Analysis

Optimizing Strong Atomicity Overhead

Related Work

Concluding Remarks

Slide 6

Explicit Scheduling Model

® A program representation that:
® Contains explicit scheduling information
® Allows for static reasoning

® General enough for structured (fork/join, Cilk,
OpenMP) and unstructured parallelism (threads)

® Pre-processing step transforms traditional programs
into programs with explicit scheduling

Slide 7

Explicit Scheduling

Slide 8

Explicit Scheduling

® A task method is similar to a regular method:

® code that is executed in the context of this

Slide 8

Explicit Scheduling

® A task method is similar to a regular method:

® code that is executed in the context of this

® [nstead of calling a task method, one schedules it for
later execution:

Activation b = schedule obj.bar(42);

Slide 8

Explicit Scheduling (2)

Slide 9

Explicit Scheduling (2)

® . -statement creates explicit happens-before
relationship:

a - b;

Slide 9

Explicit Scheduling (2)

»>-statement creates explicit happens-before
relationship:

a - b;

Implicit happens-before relationship between
scheduling task and scheduled task

Slide 9

Explicit Scheduling (2)

® . -statement creates explicit happens-before
relationship:

a - b;

® |mplicit happens-before relationship between
scheduling task and scheduled task

® At runtime, scheduler constantly chooses executable
activations

Slide 9

class MyClass {
task doWrite() {...}
task doRead() {...}
task doCompute() {
Activation write = schedule doWrite();
Activation read = schedule doRead();

write » read;

¥

Slide 10

Q doCompute()

class MyClass {
task doWrite() {...}
task doRead() {...}
task doCompute() {
Activation write = schedule doWrite();
Activation read = schedule doRead();

write » read;

¥

Slide 10

Q doCompute()
class MyClass {

task doWrite() {...} Q doWrite(
task doRead() {...}

task doCompute() {
Activation write = schedule doWrite();
Activation read = schedule doRead();

write » read;

¥

Slide 10

Q doCompute()
H

task doWrite() {...} Qdovvriteo

task doRead() {...}

task doCompute() {

class MyClass {

Activation write = schedule doWrite();
Activation read = schedule doRead();

write » read;

¥

Slide 10

Q doCompute()

class MyClass { H

task doWrite() {...} Qdowme()
task doRead() {...} \
task doCompute() { s@ doRead()

Activation write = schedule doWrite();
Activation read = schedule doRead();

write » read;

¥

Slide 10

Q doCompute()

class My(Class {

Dy
task doWrite() {...} : Qdowme()
task doRead() {...} L
task doCompute() { s@ doRead()

Activation write = schedule doWrite();
Activation read = schedule doRead();

write » read;

¥

Slide 10

class My(Class {
task doWrite() {...} <::>
task doRead() {...} l

task doCompute() {

doWrite()

doRead()
Activation write = schedule doWrite();
Activation read = schedule doRead();

write » read;

¥

Slide 10

Motivation

Explicit Scheduling

Schedule Analysis

Optimizing Strong Atomicity Overhead

Related Work

Concluding Remarks

Slide | |

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

Slide 12

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

{1 ...

pl: X.use

pZ2:. y.use

Slide 12

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

{1 ...

mayInterfere(pl, p2) :- pi- « Use

pZ2:. y.use

Slide 12

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :- {pl « Use

Xl Same Object - \

Slide 12

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :- Q/_\i p1 -
Xl Same Object - \

X Different Activations | D

{ ...,
Q/"“‘S}pZ: y.use
,

Slide 12

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :- Q/_\i p1 -
Xl Same Object - \

X Different Activations | D
../

) 4 |
O/"“‘*} p2: y.use
3

Slide 12

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :- Q/_\i p1 -
Xl Same Object - \

XIDifferent Activations AN D

./

) 4 |
O/"“‘*} p2: y.use
3

XINot Ordered

Slide 12

Schedule Analysis Overview

Program
with Scheduling
Information

NYel g =Ya [U] (=
Analysis

Optimizations

Slide 13

Schedule Analysis Overview

Program
with Scheduling
Information

)

Schedule Analysis

Optimizations

Slide 14

Schedule Analysis Overview

Program
with Scheduling
Information

e May-be- Must-be-
Points Fo Y ordered P11 ordered
Analysis Analysis Analysis

Schedule Analysis

Optimizations

Slide 14

Points-to Analysis

® Computes points-to sets for each program variable
® -statements handled in next phase

® J[reats schedule statements as method calls

® Parameters are bound at schedule-time

® Flow-insensitive with respect to calls

Slide 15

Points-to Analysis

task doThings() {
Activation a = schedule AQ);
Activation b = schedule B1();
1f (random) {
b = schedule B2();
h

a - b;

Slide 16

Points-to Analysis

task doThings() {
Activation a = schedule AQ);

Activation b = schedule B1();
1f (random) {

b = schedule B2(); :::
}

a - b;

¥

Slide 16

Points-to Analysis

task doThings() {
A
Activation a = schedule AQ);

Activation b = schedule B1();
)

1f (r'andom) { Bl()

b = schedule B2(); ~—
} <t>)

a-» b; B2()

¥

Slide 16

Points-to Analysis

task doThings() {

Activation a = schedule AQ);
Activation b = schedule B1();
1f (random) {

b = schedule B2();
h

a - b;

¥

Slide 16

May-be-ordered Analysis

® Analyze happens-before relationships
® |mplicit creation edges
® Explicit arrow statements

® Compute read/write sets for each activation

Slide 17

May-be-ordered Analysis

task doThings() {

Activation a = schedule AQ);

Activation b = schedule B1();
1f (random) {

b = schedule B2();

¥ \\
a - b; | B2()

} —

Slide 18

May-be-ordered Analysis

task doThings() {
Activation a = schedule AQ);
Activation b = schedule B1();
1f (random) {
b = schedule B2();
h

a - b;

¥

Slide 18

May-be-ordered Analysis

task doThings() {
Activation a = schedule AQ); <i:::> ;

Activation b = schedule B1(); unreliable

edge
1f (random) {

b = schedule B2(); /////WHBIO
} @\ /

a - b;

¥ —

Slide 18

Conservative Approximation

Slide 19

Conservative Approximation

® May-be-ordered Analysis:
® over-approximates happens-before edges

® under-approximates parallelism

Slide 19

Conservative Approximation

® May-be-ordered Analysis:
® over-approximates happens-before edges
® under-approximates parallelism

= But: want to know if two activations must be ordered

Slide 19

Must-be-ordered Analysis

Must-be € Reality € May-be

1n # of happens-before edges

Question: how to get from may-be
ordered to must-be ordered?

Slide 20

Must-be-ordered Analysis

Must-be-ordered Analysis

® [rivial solution: remove all edges

Slide 21

Must-be-ordered Analysis

® [rivial solution: remove all edges
® Current solution: filter out edges
® No conditional edges
® Only edges with single source and target objects

® Analyze simple loops, but no recursion

Slide 21

Motivation

Explicit Scheduling

Schedule Analysis

Optimizing Strong Atomicity Overhead

Related Work

Concluding Remarks

Slide 22

Concurrency Control Mechanisms

® [wo common concurrency control mechanisms for
shared-memory models:

® | ocks with synchronized blocks
= Synchronization removal optimization
® Software [ransactional Memory (STM)

= Reducing strong atomicity overhead

Slide 23

Strong Atomicity

® |n a strong atomic model, every memory access
must be treated as if it occurred inside a transaction

® ec.g.,a write x.f = 3; outside a transaction is
equivalent to:

atomic { x.f = 3; }

® Without optimization:

® Overhead on every single read/write outside a
transaction

Slide 24

Reducing Strong Atomicity Overhead

® A read/write outside a transaction requires a
memory barrier if:

® any transaction may access same object
® it may access it concurrently

® Otherwise, we can remove the memory barrier

Slide 25

Reducing Strong Atomicity Overhead

® A read/write outside a transaction requires a
memory barrier if:

® any transaction may access same object
® it may access it concurrently

® Otherwise, we can remove the memory barrier

requiresReadBarrier(readBC) :-
readOutsideTransaction(readBC),
writelInsideTransaction(writeBC),

mayInterfere(readBC, writeB(C).

Slide 25

Motivation

Explicit Scheduling

Schedule Analysis

Optimizing Strong Atomicity Overhead

Related Work

Concluding Remarks

Slide 26

Related VWork

® Pointer Analysis for Parallel Programs [Rugina, Rinard '03]

® Interference information for fork/join parallelism
® Combined with Escape Analysis [salcanu, Rinard ‘017, [Nanda, Ramesh '03]
® Compute Points-to sets, no ordering

® May-happen-in-parallel [Naumovich et al.’99]

® For XI0 (structured parallelism)
® May-happen-before [Barik '05]

® Happens-before relations in thread creation trees

Slide 27

Concluding Remarks

® Exposing scheduling constraints to compiler enables
static analysis of runtime schedules

® --statements increase optimization potential

® Schedule analysis factors out common aspects of
optimizations

® |ntegration into single optimizing compiler

® E.g., locking and STM in same program

Slide 28

Concluding Remarks

Slide 30

Concluding Remarks

® Exposing scheduling constraints to compiler enables
static analysis of runtime schedules

® |ndependent from parallelism mechanism

® e.g., threads, fork/join, intervals, ...

Slide 30

Concluding Remarks

® Exposing scheduling constraints to compiler enables
static analysis of runtime schedules

® |ndependent from parallelism mechanism
® e.g., threads, fork/join, intervals, ...

® Schedule analysis factors out common aspects of
optimizations

® Simplifies optimization implementations
® |ntegration into single optimizing compiler

® e.g., locking and STM in same program

Slide 30

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

Slide 31

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

{1 ...

pl: X.use

pZ: X.use

Slide 31

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

{1 ...

mayInterfere(pl, p2) :- pi- « Use

pZ: X.use

Slide 31

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :- Q/_\i p1 -

Slide 31

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :- Q/_\i p1 -

execute(Cactl, pl),
execute(Cact2, p2),

Slide 31

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :- Q/_\i p1 -

execute(Cactl, pl), . \\&
¥

execute(Cact2, p2), d D

Slide 31

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :- Q/_\i p1 -
execute(Cactl, pl), . \\&

¥
execute(Cact2, p2), d

access(pl, obj), *
access(p2, obj), { //Z

Slide 31

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :-
execute(actl, pl),
execute(Cact2, p2),

access(pl, obj),

access(p2, obj),

Qf—\i pl X.use
— \

Slide 31

Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :-
execute(actl, pl),
execute(Cact2, p2),

access(pl, obj),

access(p2, obj),

lordered(actl, act?).

{ ...
T]

Slide 31

® |dentify and analyze special cases/patterns. E.g.:

® relative ordering of program phases
® primitive recursion
® nested loops

® Performance evaluation

Slide 32

® Do we need to synchronize?

4 ;\ 4 h N 4 b
\ , J
\‘ \ R,
\ \ 4 /
\ \ ' /
\ LY 4
\ d ! f
\ \
/
\

\ 4
i | - ’
. V4
1 ,
! 3 V
i 4
i

Slide 33

® Do we need to synchronize?

\ p \ \) i
v \ | | i
A 4 \ \ “ / }
p \ \"‘\ ¢ /‘
N g \ (}, ‘L{ \ - (’_.
\\

Slide 33

A Note on Notation

® Datalog: formal and executable specification language

® Efficient implementations scale to large real-world
program analyses (VWhaley&Lam, bddbddb)

Slide 34

A Note on Notation

® Datalog: formal and executable specification language

® Efficient implementations scale to large real-world
program analyses (VWhaley&Lam, bddbddb)

® Example:

trans(x, y) :- edge(x, Vy).

trans(x, y2) :- trans(x, yl), edge(yl, y2).

Slide 34

A Note on Notation

® Datalog: formal and executable specification language

® Efficient implementations scale to large real-world
program analyses (VWhaley&Lam, bddbddb)

® Example:

trans(x, y) :- edge(x, Vy).

trans(x, y2) :- trans(x, yl), edge(yl, y2).

® Maps naturally to inference rules:

edge(x, Yy) trans(x, yl) edge(yl, y2)
trans(x, y) trans(x, y2)

Slide 34

Concluding Remarks

Slide 35

Concluding Remarks

® Schedule analysis handles different parallelism styles:

® Threads, fork/join, intervals, ...

® .. can be intermixed in the same program

Slide 35

Concluding Remarks

® Schedule analysis handles different parallelism styles:

® Threads, fork/join, intervals, ...

® .. can be intermixed in the same program
® Synergistic effects between optimizations:

® Simpler implementations, integrated

® e.g.,locking and STM in the same program

Slide 35

Concluding Remarks

® Schedule analysis handles different parallelism styles:

® Threads, fork/join, intervals, ...

® .. can be intermixed in the same program
® Synergistic effects between optimizations:

® Simpler implementations, integrated

® e.g.,locking and STM in the same program

® Optimizations directly profit from improvements of
the schedule analysis

Slide 35

Synchronization Removal

® A monitor enter bytecode is required if parallel
activations may try to lock the same object

® Otherwise, it can be removed

Slide 36

Synchronization Removal

® A monitor enter bytecode is required if parallel
activations may try to lock the same object

® Otherwise, it can be removed

requiredMonitorkEnter(enterBCl) :-
1sMonitorkEnter(enterB(Cl),
1sMonitorkEnter(enterB(C2),
mayInterfere(enterBCl, enterB(C2).

Slide 36

Pre-processing

® Compute domains and extract static program facts

® Examples:

Slide 37

Pre-processing

® Compute domains and extract static program facts

® Examples:

store(bc:BC, lhs:Var, f:Field, rhs:Var)
new (lhs:Variable, 0:0bj)

Slide 37

Pre-processing

® Compute domains and extract static program facts

® Examples:

store(bc:BC, lhs:Var, f:Field, rhs:Var)
new (lhs:Variable, 0:0bj)

arrow(lhs:Var, rhs:Var)

schedule(lhs:Var, s:Sig, act:0bj)

Slide 37

May-be-ordered Analysis

® Compute read/write sets

readsCact:0bj, obj:0bj) :-
execute(act, bc),
load(bc, v, _, _),
variablePT(v, obj).

Slide 38

class MyClass { <:>

task doCompute(Vector 1in) {
Activation last = now;
for(Object o : 1n) {
Activation map = sched this.doMap(o);
Activation write = sched this.doWrite(map);
map -» write;
last - write;

last = write;

I3,

Slide 39

class MyClass { <:>

task doCompute(Vector 1in) {
Activation last = now;
for(Object o : 1n) {
Activation map = sched this.doMap(o);
Activation write = sched this.doWrite(map);
map -» write;
last - write;

last = write;

I3,

Slide 39

class MyClass { ast =)

task doCompute(Vector 1in) {
Activation last = now;
for(Object o : 1n) {
Activation map = sched this.doMap(o);
Activation write = sched this.doWrite(map);
map -» write;
last - write;

last = write;

I3,

Slide 39

class MyClass { ast =)

task doCompute(Vector 1in) {
Activation last = now;
for(Object o : 1n) {
Activation map = sched this.doMap(o);
Activation write = sched this.doWrite(map);
map -» write;
last - write;

last = write;

I3,

Slide 39

class MyClass { kmt'*§:>

task doCompute(Vector 1in) {
Activation last = now;
for(Object o : 1n) {
Activation map = sched this.doMap(o);
Activation write = sched this.doWrite(map);
map -» write;
last - write;

last = write;

I3,

Slide 39

class MyClass { kﬁt'*§:>

task doCompute(Vector 1in) {
Activation last = now;
for(Object o : 1n) {
Activation map = sched this.doMap(o);
Activation write = sched this.doWrite(map);
map -» write;
last - write;

last = write;

I3,

Slide 39

class MyClass { last —

task doCompute(Vector 1in) {
Activation last = now;
for(Object o : 1n) {
Activation map = sched this.doMap(o);
Activation write = sched this.doWrite(map);
map -» write;
last - write;

last = write;

I3,

Slide 39

class MyClass { last —

task doCompute(Vector 1in) {
Activation last = now;
for(Object o : 1n) {
Activation map = sched this.doMap(o);
Activation write = sched this.doWrite(map);
map -» write;
last - write;

last = write;

I3,

Slide 39

class MyClass {

task doCompute(Vector 1in) {

. . last —
Activation last = now;

for(Object o : 1n) {
Activation map = sched this.doMap(o);
Activation write = sched this.doWrite(map);
map - write;
last - write;

last = write;

I3,

Slide 39

class MyClass {

task doCompute(Vector 1in) {

. . last —
Activation last = now;

for(Object o : 1n) {
Activation map = sched this.doMap(o);
Activation write = sched this.doWrite(map);
map - write;
last - write;

last = write;

I3,

Slide 39

class MyClass {

task doCompute(Vector 1in) {

, . last —
Activation last = now;

for(Object o : 1n) {
Activation map = sched this.doMap(o);
Activation write = sched this.doWrite(map);
map - write;
last - write;

last = write;

I3,

e vle e

Slide 39

Other Optimizations

® Dependence reduction

® Removing lock-guards in intervals
® Removing happens-before assertions in intervals

® More!

Slide 40

