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happens-before

☐  Aliased✗
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Motivation

• Optimizations profit from static knowledge about 
runtime schedules

• Optimizations today must reinvent own analyses

• Our goal: factor out analysis of task schedules

• Simplification + integration of optimizations

• Task ordering information increases optimization 
potential

4
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Schedule Analysis Overview
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Program 
with Scheduling 

Information
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Analysis
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Outline

• Motivation

• Explicit Scheduling

• Schedule Analysis

• Optimizing Strong Atomicity Overhead

• Related Work

• Concluding Remarks

6
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Explicit Scheduling Model

• A program representation that:

• Contains explicit scheduling information

• Allows for static reasoning 

• General enough for structured (fork/join, Cilk, 
OpenMP) and unstructured parallelism (threads)

• Pre-processing step transforms traditional programs 
into programs with explicit scheduling

7
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• A task method is similar to a regular method:

• code that is executed in the context of this
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Explicit Scheduling

• A task method is similar to a regular method:

• code that is executed in the context of this

• Instead of calling a task method, one schedules it for 
later execution:

8

Activation b = schedule obj.bar(42);
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• !-statement creates explicit happens-before 
relationship:
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a ! b;
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Explicit Scheduling (2)

• !-statement creates explicit happens-before 
relationship:

• Implicit happens-before relationship between    
scheduling task and scheduled task

• At runtime, scheduler constantly chooses executable 
activations

9

a ! b;
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class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}
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Outline

• Motivation

• Explicit Scheduling

• Schedule Analysis

• Optimizing Strong Atomicity Overhead

• Related Work

• Concluding Remarks
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Generic Optimization Question

12

May a memory access at program point p1 interfere 
with a memory access at program point p2?
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Generic Optimization Question

12

mayInterfere(p1, p2) :-

{ ...
p2: y.use

  ...
}

{ ...
p1: x.use

  ...
}

May a memory access at program point p1 interfere 
with a memory access at program point p2?

☐ Same Object✗

☐ Different Activations✗

☐ Not Ordered✗
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Points-to Analysis

15

• Computes points-to sets for each program variable

• !-statements handled in next phase

• Treats schedule statements as method calls

• Parameters are bound at schedule-time

• Flow-insensitive with respect to calls
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task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

Points-to Analysis
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May-be-ordered Analysis

• Analyze happens-before relationships

• Implicit creation edges

• Explicit arrow statements

• Compute read/write sets for each activation

17
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task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

A()a

B2()

b

May-be-ordered Analysis
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unreliable
edge
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Conservative Approximation

• May-be-ordered Analysis:

• over-approximates happens-before edges

• under-approximates parallelism
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Conservative Approximation

• May-be-ordered Analysis:

• over-approximates happens-before edges

• under-approximates parallelism

➡ But: want to know if two activations must be ordered

19
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Must-be-ordered Analysis

Question: how to get from may-be 
ordered to must-be ordered?

20

Must-be ⊆ Reality ⊆ May-be

in # of happens-before edges



Slide

Must-be-ordered Analysis
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Must-be-ordered Analysis

• Trivial solution: remove all edges
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Must-be-ordered Analysis

• Trivial solution: remove all edges

• Current solution: filter out edges

• No conditional edges

• Only edges with single source and target objects

• Analyze simple loops, but no recursion

21
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Outline

• Motivation

• Explicit Scheduling

• Schedule Analysis

• Optimizing Strong Atomicity Overhead

• Related Work

• Concluding Remarks
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Concurrency Control Mechanisms

• Two common concurrency control mechanisms for 
shared-memory models:

• Locks with synchronized blocks

➡ Synchronization removal optimization

• Software Transactional Memory (STM)

➡ Reducing strong atomicity overhead

23
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Strong Atomicity

• In a strong atomic model, every memory access 
must be treated as if it occurred inside a transaction

• e.g., a write x.f = 3; outside a transaction is 
equivalent to:

24

atomic { x.f = 3; }

• Without optimization:

• Overhead on every single read/write outside a 
transaction
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Reducing Strong Atomicity Overhead
• A read/write outside a transaction requires a 

memory barrier if:

• any transaction may access same object

• it may access it concurrently

• Otherwise, we can remove the memory barrier

25
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• Otherwise, we can remove the memory barrier
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requiresReadBarrier(readBC) :-
readOutsideTransaction(readBC),

writeInsideTransaction(writeBC),
mayInterfere(readBC, writeBC).
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• Motivation

• Explicit Scheduling

• Schedule Analysis
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Related Work
• Pointer Analysis for Parallel Programs [Rugina, Rinard ’03]

• Interference information for fork/join parallelism

• Combined with Escape Analysis [Salcianu, Rinard ‘01], [Nanda, Ramesh ’03]

• Compute Points-to sets, no ordering

• May-happen-in-parallel [Naumovich et al. ’99]

• For X10 (structured parallelism)

• May-happen-before [Barik ’05]

• Happens-before relations in thread creation trees

27
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Concluding Remarks

• Exposing scheduling constraints to compiler enables 
static analysis of runtime schedules

• !-statements increase optimization potential

• Schedule analysis factors out common aspects of 
optimizations

• Integration into single optimizing compiler

• E.g., locking and STM in same program

28
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Concluding Remarks
• Exposing scheduling constraints to compiler enables 

static analysis of runtime schedules

• Independent from parallelism mechanism

• e.g., threads, fork/join, intervals, ...

• Schedule analysis factors out common aspects of 
optimizations

• Simplifies optimization implementations

• Integration into single optimizing compiler

• e.g., locking and STM in same program
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Generic Optimization Question

31

access(p1, obj),

!ordered(act1, act2).
access(p2, obj),

mayInterfere(p1, p2) :-
execute(act1, p1),
execute(act2, p2),

{ ...
p2: x.use

  ...
}

{ ...
p1: x.use

  ...
}

May a memory access at program point p1 interfere 
with a memory access at program point p2?
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Next Steps

• Identify and analyze special cases/patterns. E.g.:

• relative ordering of program phases

• primitive recursion

• nested loops

• Performance evaluation

32
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program analyses (Whaley&Lam, bddbddb)
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• Example:

trans(x, y)  :- edge(x, y).

trans(x, y2) :- trans(x, y1), edge(y1, y2).
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A Note on Notation
• Datalog: formal and executable specification language

• Efficient implementations scale to large real-world 
program analyses (Whaley&Lam, bddbddb)

34

edge(x, y)
trans(x, y)

trans(x, y1) edge(y1, y2)
trans(x, y2)

• Maps naturally to inference rules:

• Example:

trans(x, y)  :- edge(x, y).

trans(x, y2) :- trans(x, y1), edge(y1, y2).
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Concluding Remarks
• Schedule analysis handles different parallelism styles:

• Threads, fork/join, intervals, ...

• ... can be intermixed in the same program

• Synergistic effects between optimizations:

• Simpler implementations, integrated

• e.g., locking and STM in the same program

• Optimizations directly profit from improvements of 
the schedule analysis

35
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Synchronization Removal
• A monitor enter bytecode is required if parallel 

activations may try to lock the same object

• Otherwise, it can be removed

36
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Synchronization Removal
• A monitor enter bytecode is required if parallel 

activations may try to lock the same object

• Otherwise, it can be removed

36

requiredMonitorEnter(enterBC1) :-
isMonitorEnter(enterBC1),

isMonitorEnter(enterBC2),
mayInterfere(enterBC1, enterBC2).
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Pre-processing
• Compute domains and extract static program facts

• Examples:

37

store(bc:BC, lhs:Var, f:Field, rhs:Var) 
new  (lhs:Variable, o:Obj)

arrow(lhs:Var, rhs:Var)
schedule(lhs:Var, s:Sig, act:Obj)
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May-be-ordered Analysis

38

reads(act:Obj, obj:Obj) :-
execute(act, bc),
load(bc, v, _, _),
variablePT(v, obj).

• Compute read/write sets
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class MyClass {

...

task doCompute(Vector in) {

Activation last = now;

for(Object o : in) {

Activation map = sched this.doMap(o);

Activation write = sched this.doWrite(map);

map ! write;

last ! write;

last = write;

}

}}
39
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Other Optimizations

• Dependence reduction

• Removing lock-guards in intervals

• Removing happens-before assertions in intervals

• More?

40


