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® Can we remove synchronization for x, y?

task A task B

Q happens-before

x.write(); D y.read();

X Aliased
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® Optimizations profit from static knowledge about
runtime schedules

® Optimizations today must reinvent own analyses
® Our goal: factor out analysis of task schedules
® Simplification + integration of optimizations

® Task ordering information increases optimization
potential
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Schedule Analysis Overview

Program
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Motivation

Explicit Scheduling

Schedule Analysis

Optimizing Strong Atomicity Overhead

Related Work

Concluding Remarks
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Explicit Scheduling Model

® A program representation that:
® Contains explicit scheduling information
® Allows for static reasoning

® General enough for structured (fork/join, Cilk,
OpenMP) and unstructured parallelism (threads)

® Pre-processing step transforms traditional programs
into programs with explicit scheduling
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Explicit Scheduling
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Explicit Scheduling

® A task method is similar to a regular method:

® code that is executed in the context of this
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Explicit Scheduling

® A task method is similar to a regular method:

® code that is executed in the context of this

® [nstead of calling a task method, one schedules it for
later execution:

Activation b = schedule obj.bar(42);
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Explicit Scheduling (2)
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Explicit Scheduling (2)

® . -statement creates explicit happens-before
relationship:

a - b;
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Explicit Scheduling (2)

»>-statement creates explicit happens-before
relationship:

a - b;

Implicit happens-before relationship between
scheduling task and scheduled task
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Explicit Scheduling (2)

® . -statement creates explicit happens-before
relationship:

a - b;

® |mplicit happens-before relationship between
scheduling task and scheduled task

® At runtime, scheduler constantly chooses executable
activations

Slide 9



class MyClass {
task doWrite() {...}
task doRead() {...}
task doCompute() {
Activation write = schedule doWrite();
Activation read = schedule doRead();

write » read;

¥
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Q doCompute()
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Q doCompute()
H

task doWrite() {...} Qdovvriteo

task doRead() {...}

task doCompute() {

class MyClass {

Activation write = schedule doWrite();
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write » read;
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Q doCompute()

class MyClass { H

task doWrite() {...} Qdowme()
task doRead() {...} \
task doCompute() { s@ doRead()

Activation write = schedule doWrite();
Activation read = schedule doRead();
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Q doCompute()

class My(Class {
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class My(Class {
task doWrite() {...} <::>
task doRead() {...} l

task doCompute() {

doWrite()

doRead()
Activation write = schedule doWrite();
Activation read = schedule doRead();

write » read;

¥
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Optimizing Strong Atomicity Overhead

Related Work

Concluding Remarks
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Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!
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Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :- Q/_\i p1 -
Xl Same Object - \

XIDifferent Activations AN D
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Schedule Analysis Overview

Program
with Scheduling
Information
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Points-to Analysis

® Computes points-to sets for each program variable
® -statements handled in next phase

® J[reats schedule statements as method calls

® Parameters are bound at schedule-time

® Flow-insensitive with respect to calls
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Points-to Analysis

task doThings() {
Activation a = schedule AQ);
Activation b = schedule B1();
1f (random) {
b = schedule B2();
h

a - b;
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Points-to Analysis

task doThings() {

Activation a = schedule AQ);
Activation b = schedule B1();
1f (random) {

b = schedule B2();
h

a - b;
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May-be-ordered Analysis

® Analyze happens-before relationships
® |mplicit creation edges
® Explicit arrow statements

® Compute read/write sets for each activation
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May-be-ordered Analysis

task doThings() {

Activation a = schedule AQ);

Activation b = schedule B1();
1f (random) {

b = schedule B2();
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May-be-ordered Analysis

task doThings() {
Activation a = schedule AQ); <i:::> ;

Activation b = schedule B1(); unreliable

edge
1f (random) {

b = schedule B2(); /////WHBIO
} @\ /

a - b;

¥ —
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Conservative Approximation
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Conservative Approximation

® May-be-ordered Analysis:
® over-approximates happens-before edges

® under-approximates parallelism
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Conservative Approximation

® May-be-ordered Analysis:
® over-approximates happens-before edges
® under-approximates parallelism

= But: want to know if two activations must be ordered
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Must-be-ordered Analysis

Must-be € Reality € May-be

1n # of happens-before edges

Question: how to get from may-be
ordered to must-be ordered?
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Must-be-ordered Analysis

® [rivial solution: remove all edges
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Must-be-ordered Analysis

® [rivial solution: remove all edges
® Current solution: filter out edges
® No conditional edges
® Only edges with single source and target objects

® Analyze simple loops, but no recursion
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Motivation

Explicit Scheduling

Schedule Analysis

Optimizing Strong Atomicity Overhead

Related Work

Concluding Remarks
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Concurrency Control Mechanisms

® [wo common concurrency control mechanisms for
shared-memory models:

® | ocks with synchronized blocks
= Synchronization removal optimization
® Software [ransactional Memory (STM)

= Reducing strong atomicity overhead
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Strong Atomicity

® |n a strong atomic model, every memory access
must be treated as if it occurred inside a transaction

® ec.g.,a write x.f = 3; outside a transaction is
equivalent to:

atomic { x.f = 3; }

® Without optimization:

® Overhead on every single read/write outside a
transaction
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Reducing Strong Atomicity Overhead

® A read/write outside a transaction requires a
memory barrier if:

® any transaction may access same object
® it may access it concurrently

® Otherwise, we can remove the memory barrier
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Reducing Strong Atomicity Overhead

® A read/write outside a transaction requires a
memory barrier if:

® any transaction may access same object
® it may access it concurrently

® Otherwise, we can remove the memory barrier

requiresReadBarrier(readBC) :-
readOutsideTransaction(readBC),
writelInsideTransaction(writeBC),

mayInterfere(readBC, writeB(C).
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Motivation

Explicit Scheduling

Schedule Analysis

Optimizing Strong Atomicity Overhead

Related Work

Concluding Remarks
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Related VWork

® Pointer Analysis for Parallel Programs [Rugina, Rinard '03]

® Interference information for fork/join parallelism
® Combined with Escape Analysis [salcanu, Rinard ‘017, [Nanda, Ramesh '03]
® Compute Points-to sets, no ordering

® May-happen-in-parallel [Naumovich et al.’99]

® For XI0 (structured parallelism)
® May-happen-before [Barik '05]

® Happens-before relations in thread creation trees
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Concluding Remarks

® Exposing scheduling constraints to compiler enables
static analysis of runtime schedules

® --statements increase optimization potential

® Schedule analysis factors out common aspects of
optimizations

® |ntegration into single optimizing compiler

® E.g., locking and STM in same program
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Concluding Remarks

® Exposing scheduling constraints to compiler enables
static analysis of runtime schedules

® |ndependent from parallelism mechanism

® e.g., threads, fork/join, intervals, ...
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Concluding Remarks

® Exposing scheduling constraints to compiler enables
static analysis of runtime schedules

® |ndependent from parallelism mechanism
® e.g., threads, fork/join, intervals, ...

® Schedule analysis factors out common aspects of
optimizations

® Simplifies optimization implementations
® |ntegration into single optimizing compiler

® e.g., locking and STM in same program
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Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

Slide 31



Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

{1 ...

pl: X.use

pZ: X.use

Slide 31



Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

{1 ...

mayInterfere(pl, p2) :- pi- « Use

pZ: X.use

Slide 31



Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :- Q/_\i p1 -

Slide 31



Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!
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execute(Cact2, p2),
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Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :- Q/_\i p1 -
execute(Cactl, pl), . \\&

¥
execute(Cact2, p2), d

access(pl, obj), *
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Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :-
execute(actl, pl),
execute(Cact2, p2),

access(pl, obj),

access(p2, obj),

Qf—\i pl X.use
— \
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Generic Optimization Question

May a memory access at program point pl interfere
with a memory access at program point p2!

mayInterfere(pl, p2) :-
execute(actl, pl),
execute(Cact2, p2),

access(pl, obj),

access(p2, obj),

lordered(actl, act?).

{ ...
T ]
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® |dentify and analyze special cases/patterns. E.g.:

® relative ordering of program phases
® primitive recursion
® nested loops

® Performance evaluation
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® Do we need to synchronize?
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® Do we need to synchronize?
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A Note on Notation

® Datalog: formal and executable specification language

® Efficient implementations scale to large real-world
program analyses (VWhaley&Lam, bddbddb)
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A Note on Notation

® Datalog: formal and executable specification language

® Efficient implementations scale to large real-world
program analyses (VWhaley&Lam, bddbddb)

® Example:

trans(x, y) :- edge(x, Vy).

trans(x, y2) :- trans(x, yl), edge(yl, y2).
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A Note on Notation

® Datalog: formal and executable specification language

® Efficient implementations scale to large real-world
program analyses (VWhaley&Lam, bddbddb)

® Example:

trans(x, y) :- edge(x, Vy).

trans(x, y2) :- trans(x, yl), edge(yl, y2).

® Maps naturally to inference rules:

edge(x, Yy) trans(x, yl) edge(yl, y2)
trans(x, y) trans(x, y2)
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Concluding Remarks
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Concluding Remarks

® Schedule analysis handles different parallelism styles:

® Threads, fork/join, intervals, ...

® .. can be intermixed in the same program
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Concluding Remarks

® Schedule analysis handles different parallelism styles:

® Threads, fork/join, intervals, ...

® .. can be intermixed in the same program
® Synergistic effects between optimizations:

® Simpler implementations, integrated

® e.g.,locking and STM in the same program
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Concluding Remarks

® Schedule analysis handles different parallelism styles:

® Threads, fork/join, intervals, ...

® .. can be intermixed in the same program
® Synergistic effects between optimizations:

® Simpler implementations, integrated

® e.g.,locking and STM in the same program

® Optimizations directly profit from improvements of
the schedule analysis
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Synchronization Removal

® A monitor enter bytecode is required if parallel
activations may try to lock the same object

® Otherwise, it can be removed
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Synchronization Removal

® A monitor enter bytecode is required if parallel
activations may try to lock the same object

® Otherwise, it can be removed

requiredMonitorkEnter(enterBCl) :-
1sMonitorkEnter(enterB(Cl),
1sMonitorkEnter(enterB(C2),
mayInterfere(enterBCl, enterB(C2).
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Pre-processing

® Compute domains and extract static program facts

® Examples:
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Pre-processing

® Compute domains and extract static program facts

® Examples:

store(bc:BC, lhs:Var, f:Field, rhs:Var)
new (lhs:Variable, 0:0bj)
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Pre-processing

® Compute domains and extract static program facts

® Examples:

store(bc:BC, lhs:Var, f:Field, rhs:Var)
new (lhs:Variable, 0:0bj)

arrow(lhs:Var, rhs:Var)

schedule(lhs:Var, s:Sig, act:0bj)
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May-be-ordered Analysis

® Compute read/write sets

readsCact:0bj, obj:0bj) :-
execute(act, bc),
load(bc, v, _, _),
variablePT(v, obj).
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class MyClass { <:>

task doCompute(Vector 1in) {
Activation last = now;
for(Object o : 1n) {
Activation map = sched this.doMap(o);
Activation write = sched this.doWrite(map);
map -» write;
last - write;

last = write;

I3,
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class MyClass {

task doCompute(Vector 1in) {

, . last —
Activation last = now;
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last = write;
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Other Optimizations

® Dependence reduction

® Removing lock-guards in intervals
® Removing happens-before assertions in intervals

® More!
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