
Static Analysis of
Dynamic Schedules

and its Application to Optimization of Parallel Programs

Christoph M. Angerer
Thomas R. Gross

ETH Zurich, Switzerland

Slide

Example

2

Slide

Example

2

task A

synchronized(x) {
x.write();

}

Slide

synchronized(y) {
y.read();

}

Example

2

task A task B

synchronized(x) {
x.write();

}

Slide

synchronized(y) {
y.read();

}

Example

• Can we remove synchronization for x, y?

2

task A task B

synchronized(x) {
x.write();

}

Slide

synchronized(y) {
y.read();

}

Example

• Can we remove synchronization for x, y?

2

task A task B

synchronized(x) {
x.write();

}

☐ Different Objects✓

Slide

Example

• Can we remove synchronization for x, y?

2

task A task B

☐ Different Objects✓

y.read();x.write();

Slide

Example

• Can we remove synchronization for x, y?

3

task A task B

synchronized(x) {
x.write();

}

synchronized(y) {
y.read();

}

Slide

Example

• Can we remove synchronization for x, y?

3

task A task B

synchronized(x) {
x.write();

}

☐ Aliased✗

synchronized(y) {
y.read();

}

Slide

Example

• Can we remove synchronization for x, y?

3

task A task B
happens-before

synchronized(x) {
x.write();

}

☐ Aliased✗

synchronized(y) {
y.read();

}

Slide

Example

• Can we remove synchronization for x, y?

3

task A task B
happens-before

synchronized(x) {
x.write();

}

☐ Aliased✗
☐ Ordered memory access✓

synchronized(y) {
y.read();

}

Slide

Example

• Can we remove synchronization for x, y?

3

task A task B
happens-before

☐ Aliased✗
☐ Ordered memory access✓

y.read();x.write();

Slide

Motivation

• Optimizations profit from static knowledge about
runtime schedules

• Optimizations today must reinvent own analyses

• Our goal: factor out analysis of task schedules

• Simplification + integration of optimizations

• Task ordering information increases optimization
potential

4

Slide

Schedule Analysis Overview

5

Program
with Scheduling

Information

Optimizations

Schedule
Analysis

Slide

Outline

• Motivation

• Explicit Scheduling

• Schedule Analysis

• Optimizing Strong Atomicity Overhead

• Related Work

• Concluding Remarks

6

Slide

Explicit Scheduling Model

• A program representation that:

• Contains explicit scheduling information

• Allows for static reasoning

• General enough for structured (fork/join, Cilk,
OpenMP) and unstructured parallelism (threads)

• Pre-processing step transforms traditional programs
into programs with explicit scheduling

7

Slide

Explicit Scheduling

8

Slide

Explicit Scheduling

• A task method is similar to a regular method:

• code that is executed in the context of this

8

Slide

Explicit Scheduling

• A task method is similar to a regular method:

• code that is executed in the context of this

• Instead of calling a task method, one schedules it for
later execution:

8

Activation b = schedule obj.bar(42);

Slide

Explicit Scheduling (2)

9

Slide

Explicit Scheduling (2)

• !-statement creates explicit happens-before
relationship:

9

a ! b;

Slide

Explicit Scheduling (2)

• !-statement creates explicit happens-before
relationship:

• Implicit happens-before relationship between
scheduling task and scheduled task

9

a ! b;

Slide

Explicit Scheduling (2)

• !-statement creates explicit happens-before
relationship:

• Implicit happens-before relationship between
scheduling task and scheduled task

• At runtime, scheduler constantly chooses executable
activations

9

a ! b;

Slide 10

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

Slide 10

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()

Slide 10

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()

doWrite()

Slide 10

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()

doWrite()

Slide 10

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()

doWrite()

doRead()

Slide 10

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doCompute()

doWrite()

doRead()

Slide 10

class MyClass {

task doWrite() {...}

task doRead() {...}

task doCompute() {

Activation write = schedule doWrite();

Activation read = schedule doRead();

write ! read;

}

}

doWrite()

doRead()

Slide

Outline

• Motivation

• Explicit Scheduling

• Schedule Analysis

• Optimizing Strong Atomicity Overhead

• Related Work

• Concluding Remarks

11

Slide

Generic Optimization Question

12

May a memory access at program point p1 interfere
with a memory access at program point p2?

Slide

Generic Optimization Question

12

{ ...
p2: y.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

Slide

Generic Optimization Question

12

mayInterfere(p1, p2) :-

{ ...
p2: y.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

Slide

Generic Optimization Question

12

mayInterfere(p1, p2) :-

{ ...
p2: y.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

☐ Same Object✗

Slide

Generic Optimization Question

12

mayInterfere(p1, p2) :-

{ ...
p2: y.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

☐ Same Object✗

☐ Different Activations✗

Slide

Generic Optimization Question

12

mayInterfere(p1, p2) :-

{ ...
p2: y.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

☐ Same Object✗

☐ Different Activations✗

Slide

Generic Optimization Question

12

mayInterfere(p1, p2) :-

{ ...
p2: y.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

☐ Same Object✗

☐ Different Activations✗

☐ Not Ordered✗

Slide

Schedule Analysis Overview

13

Program
with Scheduling

Information

Optimizations

Schedule
Analysis

Slide

Schedule Analysis

Schedule Analysis Overview

14

Program
with Scheduling

Information

Optimizations

Slide

Schedule Analysis

Schedule Analysis Overview

14

Must-be-
ordered
Analysis

Program
with Scheduling

Information

Optimizations

May-be-
ordered
Analysis

Points-to
Analysis

Slide

Points-to Analysis

15

• Computes points-to sets for each program variable

• !-statements handled in next phase

• Treats schedule statements as method calls

• Parameters are bound at schedule-time

• Flow-insensitive with respect to calls

Slide 16

task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

Points-to Analysis

Slide 16

task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

a

b

Points-to Analysis

Slide 16

task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

A()a

B2()

b

Points-to Analysis

B1()

Slide 16

task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

A()a

B2()

b

Points-to Analysis

B1()

Slide

May-be-ordered Analysis

• Analyze happens-before relationships

• Implicit creation edges

• Explicit arrow statements

• Compute read/write sets for each activation

17

Slide 18

task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

A()a

B2()

b

May-be-ordered Analysis

B1()

Slide 18

task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

A()a

B2()

b

May-be-ordered Analysis

B1()

Slide 18

task doThings() {

Activation a = schedule A();

Activation b = schedule B1();

if (random) {

b = schedule B2();

}

a ! b;

}

A()a

B2()

b

May-be-ordered Analysis

B1()

unreliable
edge

Slide

Conservative Approximation

19

Slide

Conservative Approximation

• May-be-ordered Analysis:

• over-approximates happens-before edges

• under-approximates parallelism

19

Slide

Conservative Approximation

• May-be-ordered Analysis:

• over-approximates happens-before edges

• under-approximates parallelism

➡ But: want to know if two activations must be ordered

19

Slide

Must-be-ordered Analysis

Question: how to get from may-be
ordered to must-be ordered?

20

Must-be ⊆ Reality ⊆ May-be

in # of happens-before edges

Slide

Must-be-ordered Analysis

21

Slide

Must-be-ordered Analysis

• Trivial solution: remove all edges

21

Slide

Must-be-ordered Analysis

• Trivial solution: remove all edges

• Current solution: filter out edges

• No conditional edges

• Only edges with single source and target objects

• Analyze simple loops, but no recursion

21

Slide

Outline

• Motivation

• Explicit Scheduling

• Schedule Analysis

• Optimizing Strong Atomicity Overhead

• Related Work

• Concluding Remarks

22

Slide

Concurrency Control Mechanisms

• Two common concurrency control mechanisms for
shared-memory models:

• Locks with synchronized blocks

➡ Synchronization removal optimization

• Software Transactional Memory (STM)

➡ Reducing strong atomicity overhead

23

Slide

Strong Atomicity

• In a strong atomic model, every memory access
must be treated as if it occurred inside a transaction

• e.g., a write x.f = 3; outside a transaction is
equivalent to:

24

atomic { x.f = 3; }

• Without optimization:

• Overhead on every single read/write outside a
transaction

Slide

Reducing Strong Atomicity Overhead
• A read/write outside a transaction requires a

memory barrier if:

• any transaction may access same object

• it may access it concurrently

• Otherwise, we can remove the memory barrier

25

Slide

Reducing Strong Atomicity Overhead
• A read/write outside a transaction requires a

memory barrier if:

• any transaction may access same object

• it may access it concurrently

• Otherwise, we can remove the memory barrier

25

requiresReadBarrier(readBC) :-
readOutsideTransaction(readBC),

writeInsideTransaction(writeBC),
mayInterfere(readBC, writeBC).

Slide

Outline

• Motivation

• Explicit Scheduling

• Schedule Analysis

• Optimizing Strong Atomicity Overhead

• Related Work

• Concluding Remarks

26

Slide

Related Work
• Pointer Analysis for Parallel Programs [Rugina, Rinard ’03]

• Interference information for fork/join parallelism

• Combined with Escape Analysis [Salcianu, Rinard ‘01], [Nanda, Ramesh ’03]

• Compute Points-to sets, no ordering

• May-happen-in-parallel [Naumovich et al. ’99]

• For X10 (structured parallelism)

• May-happen-before [Barik ’05]

• Happens-before relations in thread creation trees

27

Slide

Concluding Remarks

• Exposing scheduling constraints to compiler enables
static analysis of runtime schedules

• !-statements increase optimization potential

• Schedule analysis factors out common aspects of
optimizations

• Integration into single optimizing compiler

• E.g., locking and STM in same program

28

Slide

Concluding Remarks

30

Slide

Concluding Remarks
• Exposing scheduling constraints to compiler enables

static analysis of runtime schedules

• Independent from parallelism mechanism

• e.g., threads, fork/join, intervals, ...

30

Slide

Concluding Remarks
• Exposing scheduling constraints to compiler enables

static analysis of runtime schedules

• Independent from parallelism mechanism

• e.g., threads, fork/join, intervals, ...

• Schedule analysis factors out common aspects of
optimizations

• Simplifies optimization implementations

• Integration into single optimizing compiler

• e.g., locking and STM in same program
30

Slide

Generic Optimization Question

31

May a memory access at program point p1 interfere
with a memory access at program point p2?

Slide

Generic Optimization Question

31

{ ...
p2: x.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

Slide

Generic Optimization Question

31

mayInterfere(p1, p2) :-

{ ...
p2: x.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

Slide

Generic Optimization Question

31

mayInterfere(p1, p2) :-

{ ...
p2: x.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

Slide

Generic Optimization Question

31

mayInterfere(p1, p2) :-
execute(act1, p1),
execute(act2, p2),

{ ...
p2: x.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

Slide

Generic Optimization Question

31

mayInterfere(p1, p2) :-
execute(act1, p1),
execute(act2, p2),

{ ...
p2: x.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

Slide

Generic Optimization Question

31

access(p1, obj),
access(p2, obj),

mayInterfere(p1, p2) :-
execute(act1, p1),
execute(act2, p2),

{ ...
p2: x.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

Slide

Generic Optimization Question

31

access(p1, obj),
access(p2, obj),

mayInterfere(p1, p2) :-
execute(act1, p1),
execute(act2, p2),

{ ...
p2: x.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

Slide

Generic Optimization Question

31

access(p1, obj),

!ordered(act1, act2).
access(p2, obj),

mayInterfere(p1, p2) :-
execute(act1, p1),
execute(act2, p2),

{ ...
p2: x.use

 ...
}

{ ...
p1: x.use

 ...
}

May a memory access at program point p1 interfere
with a memory access at program point p2?

Slide

Next Steps

• Identify and analyze special cases/patterns. E.g.:

• relative ordering of program phases

• primitive recursion

• nested loops

• Performance evaluation

32

Slide

Example

• Do we need to synchronize?

33

x1 x2 x3

y

Slide

Example

• Do we need to synchronize?

33

x1 x2 x3

y

Slide

A Note on Notation
• Datalog: formal and executable specification language

• Efficient implementations scale to large real-world
program analyses (Whaley&Lam, bddbddb)

34

Slide

A Note on Notation
• Datalog: formal and executable specification language

• Efficient implementations scale to large real-world
program analyses (Whaley&Lam, bddbddb)

34

• Example:

trans(x, y) :- edge(x, y).

trans(x, y2) :- trans(x, y1), edge(y1, y2).

Slide

A Note on Notation
• Datalog: formal and executable specification language

• Efficient implementations scale to large real-world
program analyses (Whaley&Lam, bddbddb)

34

edge(x, y)
trans(x, y)

trans(x, y1) edge(y1, y2)
trans(x, y2)

• Maps naturally to inference rules:

• Example:

trans(x, y) :- edge(x, y).

trans(x, y2) :- trans(x, y1), edge(y1, y2).

Slide

Concluding Remarks

35

Slide

Concluding Remarks
• Schedule analysis handles different parallelism styles:

• Threads, fork/join, intervals, ...

• ... can be intermixed in the same program

35

Slide

Concluding Remarks
• Schedule analysis handles different parallelism styles:

• Threads, fork/join, intervals, ...

• ... can be intermixed in the same program

• Synergistic effects between optimizations:

• Simpler implementations, integrated

• e.g., locking and STM in the same program

35

Slide

Concluding Remarks
• Schedule analysis handles different parallelism styles:

• Threads, fork/join, intervals, ...

• ... can be intermixed in the same program

• Synergistic effects between optimizations:

• Simpler implementations, integrated

• e.g., locking and STM in the same program

• Optimizations directly profit from improvements of
the schedule analysis

35

Slide

Synchronization Removal
• A monitor enter bytecode is required if parallel

activations may try to lock the same object

• Otherwise, it can be removed

36

Slide

Synchronization Removal
• A monitor enter bytecode is required if parallel

activations may try to lock the same object

• Otherwise, it can be removed

36

requiredMonitorEnter(enterBC1) :-
isMonitorEnter(enterBC1),

isMonitorEnter(enterBC2),
mayInterfere(enterBC1, enterBC2).

Slide

Pre-processing
• Compute domains and extract static program facts

• Examples:

37

Slide

Pre-processing
• Compute domains and extract static program facts

• Examples:

37

store(bc:BC, lhs:Var, f:Field, rhs:Var)
new (lhs:Variable, o:Obj)

Slide

Pre-processing
• Compute domains and extract static program facts

• Examples:

37

store(bc:BC, lhs:Var, f:Field, rhs:Var)
new (lhs:Variable, o:Obj)

arrow(lhs:Var, rhs:Var)
schedule(lhs:Var, s:Sig, act:Obj)

Slide

May-be-ordered Analysis

38

reads(act:Obj, obj:Obj) :-
execute(act, bc),
load(bc, v, _, _),
variablePT(v, obj).

• Compute read/write sets

Slide

class MyClass {

...

task doCompute(Vector in) {

Activation last = now;

for(Object o : in) {

Activation map = sched this.doMap(o);

Activation write = sched this.doWrite(map);

map ! write;

last ! write;

last = write;

}

}}
39

Slide

class MyClass {

...

task doCompute(Vector in) {

Activation last = now;

for(Object o : in) {

Activation map = sched this.doMap(o);

Activation write = sched this.doWrite(map);

map ! write;

last ! write;

last = write;

}

}}
39

Slide

class MyClass {

...

task doCompute(Vector in) {

Activation last = now;

for(Object o : in) {

Activation map = sched this.doMap(o);

Activation write = sched this.doWrite(map);

map ! write;

last ! write;

last = write;

}

}}
39

last →

Slide

class MyClass {

...

task doCompute(Vector in) {

Activation last = now;

for(Object o : in) {

Activation map = sched this.doMap(o);

Activation write = sched this.doWrite(map);

map ! write;

last ! write;

last = write;

}

}}
39

last →

Slide

class MyClass {

...

task doCompute(Vector in) {

Activation last = now;

for(Object o : in) {

Activation map = sched this.doMap(o);

Activation write = sched this.doWrite(map);

map ! write;

last ! write;

last = write;

}

}}
39

last →

Slide

class MyClass {

...

task doCompute(Vector in) {

Activation last = now;

for(Object o : in) {

Activation map = sched this.doMap(o);

Activation write = sched this.doWrite(map);

map ! write;

last ! write;

last = write;

}

}}
39

last →

Slide

class MyClass {

...

task doCompute(Vector in) {

Activation last = now;

for(Object o : in) {

Activation map = sched this.doMap(o);

Activation write = sched this.doWrite(map);

map ! write;

last ! write;

last = write;

}

}}
39

last →

Slide

class MyClass {

...

task doCompute(Vector in) {

Activation last = now;

for(Object o : in) {

Activation map = sched this.doMap(o);

Activation write = sched this.doWrite(map);

map ! write;

last ! write;

last = write;

}

}}
39

last →

Slide

class MyClass {

...

task doCompute(Vector in) {

Activation last = now;

for(Object o : in) {

Activation map = sched this.doMap(o);

Activation write = sched this.doWrite(map);

map ! write;

last ! write;

last = write;

}

}}
39

last →

Slide

class MyClass {

...

task doCompute(Vector in) {

Activation last = now;

for(Object o : in) {

Activation map = sched this.doMap(o);

Activation write = sched this.doWrite(map);

map ! write;

last ! write;

last = write;

}

}}
39

last →

Slide

class MyClass {

...

task doCompute(Vector in) {

Activation last = now;

for(Object o : in) {

Activation map = sched this.doMap(o);

Activation write = sched this.doWrite(map);

map ! write;

last ! write;

last = write;

}

}}
39

last →

Slide

Other Optimizations

• Dependence reduction

• Removing lock-guards in intervals

• Removing happens-before assertions in intervals

• More?

40

