
Static Analysis of Dynamic Schedules and its
Application to Optimization of Parallel

Programs

Christoph M. Angerer and Thomas R. Gross

ETH Zurich, Switzerland

Abstract. Effective optimizations for concurrent programs require the
compiler to have detailed knowledge about the scheduling of parallel
tasks at runtime. Currently, optimizations for parallel programs must
define their own models and analyses of the parallel constructs used in the
source programs. This makes developing new optimizations more difficult
and complicates their integration into a single optimizing compiler.

We investigate an approach that separates the static analysis of the dy-
namic runtime schedule from subsequent optimizations. We present three
optimizations that are based on the information gathered during the
schedule analysis. Variants of those optimizations have been described
in the literature before but each work is built upon its own highly spe-
cialized analysis. In contrast, our independent schedule analysis shows
synergistic effects where previously incompatible optimizations can now
share parts of their implementation and all be applied to the same pro-
gram.

1 Introduction

With the arrival of multicore systems, parallel programming is becoming in-
creasingly mainstream. Despite this, compilers still remain largely ignorant of
the task scheduling at run-time. Absent this knowledge, however, a compiler is
missing important optimization and verification opportunities.

Because compilers do not have a good understanding of the runtime schedul-
ing of tasks, researchers developing optimizations for parallel programs must
additionally develop their own model and analysis of the parallel constructs in
use. The overhead of defining a full-fledged analysis, however, obfuscates the
actual optimization and prohibits synergistic effects that might emerge by com-
bining different optimizations.

In this paper, we present a static analysis for parallel programs that is in-
dependent from any concrete optimization. By using our schedule analysis, the
core algorithms of existing optimizations can often be implemented in only a few
simple rules. A small algorithmic core not only helps with a better understanding
of the optimization but also supports their integration into a single optimizing
compiler. The contributions of this paper are:

– we describe a model for fine-grained parallelism based on lightweight tasks
with explicit scheduling. This model is powerful enough to express a wide
variety of existing parallelism constructs (Section 2);

– we develop a schedule analysis that computes an abstract schedule from a
program containing explicit scheduling instructions (Section 3);

– we present three optimizations for parallel programs that make use of the
results of the schedule analysis. Two optimizations work with fundamen-
tally different synchronization primitives: locks and transactional memory.
The common schedule analysis enables the optimization of programs that
intermix both those synchronization paradigms (Section 4).

The core of the schedule analysis has been implemented in a prototype and
is available online at http://wiki.github.com/chmaruni/xsched/ (Section 5).

2 A Program Model with Explicit Scheduling

In this section we describe a model for fine-grained parallelism based on lightweight
tasks with explicit scheduling. This model is general enough to express a wide va-
riety of existing concurrency patterns, from structured fork-join style parallelism
to unstructured threads. The explicit happens-before relationships simplify the
analysis of parallel program schedules while avoiding the limitations of lexically
scoped parallelism.

The basic building block of our execution model is a task. A task is similar to
a method in that it contains code that is executed in the context of a this-object
(or the class, in the case of static methods/tasks). Unlike a method, however,
one does not call a task, which would result in the immediate execution of the
body, but instead schedules it for later execution.

As an example, consider a task t() that starts a long-running computation
compute() and schedules a task print() that will print the result after the
computation has finished:

task t() {

Activation aCompute = schedule(this.compute());

Activation aPrint = schedule(this.print());

aCompute→aPrint;

}

A schedule is represented as a graph of 〈object, task()〉 pairs. The statement
schedule(this.print()), e.g., creates a new node with the this object and
the print() task and returns an object of type Activation representing that
node. Like any other object, Activation objects can be kept in local variables,
passed around as parameters, and stored in fields.

At runtime, a scheduler constantly chooses activations that are eligible for
execution and starts them. The order in which the scheduler is allowed to start
the activations is specified by the edges in the schedule graph. If the schedule
contains a happens-before edge 〈o1, t1()〉 → 〈o2, t2()〉, the scheduler must guar-
antee that activation 〈o1, t1()〉 has finished execution before activation 〈o2, t2()〉

1 class ParallelOrderedMap {

2 Vector out;

3

4 private task doMap(Object data) {

5 Object mappedData = //complex computation using data

6 now.result = mappedData;

7 }

8 private task doWrite(Activation mapActivation) {

9 out.add(mapActivation.result);

10 }

11 task mapInput(Vector input) {

12 Activation lastWrite = now;

13 for(Object data : input) {

14 Activation map = schedule(this.doMap(data));

15 Activation write = schedule(this.doWrite(map));

16

17 map → write;

18 lastWrite → write;

19

20 lastWrite = write;

21 } } }

Fig. 1. Example of a parallel ordered mapping operation.

is started. The statement aCompute→aPrint creates an explicit happens-before
relationship between the two activation objects aCompute and aPrint.

In a program, the currently executing activation can be accessed through the
keyword now. Whenever a new task is scheduled, the scheduler automatically
adds an initial happens-before relationship between now and the new activation
node. This initial edge prevent the immediate execution of the new activation
and allows the current task to add additional constraints to the schedule before it
finishes. Therefore, in the example the scheduler implicitly creates two additional
edges now→aCompute and now→aPrint.

2.1 Example of a Parallel Ordered Mapping Operation

Figure 1 shows a more complex example of a class implementing a parallel or-
dered mapping operation. When the mapInput() task is activated, passing a
Vector of input elements, this class will apply a (possibly expensive) mapping
operation to each input element in parallel and write the resulting mapped values
into the out vector in the original order.

The loop on line 13 iterates through every element in the input vector and,
for each element, schedules the doMap() task on line 14, passing the data element
to the activation. Line 15 then activates the doWrite() task for every element.
A chain of doWrite() activations write the mapped values in the correct order
into the out vector.

...

...

doWrite() doWrite() doWrite()

doMap()doMap()

mapInput()

doMap()

Fig. 2. The schedule created by mapInput() from Figure 1.

For doWrite() to get to the result of doMap(), we pass the map activation
object as a parameter to doWrite(). Inside doMap() we use the result field
provided by Activation to store the result of the mapping operation which can
then be read in doWrite(). The explicit happens-before relationship added on
line 17 ensures that the mapped value has been stored in the result field before
doWrite() executes.

So far we ensured the ordering between the mapping operation and the write
operation for each single element. The correct ordering of the writes is achieved
by an additional happens-before relationship between the current write activa-
tion and the lastWrite activation on line 18. Initially, we set lastWrite to now

in line 12 and then update it to the most recent write activation on line 20.

Figure 2 shows the schedule that is created by mapInput(). The double-
headed arrows are created implicitly by the schedule statements whereas the
single-headed arrows stem from the →-statements.

After mapInput() has finished setting up the schedule, the scheduler can
choose any of the doMap() activations for parallel execution because they are
not ordered with respect to one another. The doWrite() activations must be
executed in order, however, which guarantees the correct ordering of the written
values in the out vector.

2.2 Additional Synchronization Primitives

Explicit scheduling alone is expressive enough to model many concurrency pat-
terns such as fork-join, bounded-buffer producer-consumer, or fuzzy barriers [9].

There are cases, however, that require nondeterministic choice—which cannot
be expressed with explicit scheduling alone. Non-deterministic access to shared
resources requires additional synchronization primitives such as atomic compare-
and-swap operations, locks, or transactional memory. Take, for example, a shared
resource such as a printer and two parallel tasks waiting for user input before
accessing the printer. There is no point in the program where we can define an
ordering between the two tasks beforehand, because the timing of the user input
is unknown.

Program
bytecode

Pre-
processing

Points-to
Analysis

Schedule
Analysis

Flattening

Happens-before
relationships

Abstract
schedule,

read/write sets

Points-to
information

Program facts

OptimizationsOptimizationsOptimizations

1

3

4

2

Fig. 3. The phases of a schedule analysis.

3 Schedule Analysis

The core of our approach is a schedule analysis that can determine whether two
activations are executed in parallel, sequentially, or exclusively. Schedule analysis
thus computes the function Activation×Activation→ Relation where Relation
is one of the following:

Sequential: Two activations are sequential if their execution is strictly ordered.

Exclusive: Two activations are exclusive if they can never co-exist in a sin-
gle run of the program (e.g., they are scheduled in different branches of a
conditional statement).

Parallel: If two activations are neither sequential nor exclusive, they are con-
sidered (potentially) parallel.

In addition, schedule analysis computes the sets of objects that are read
and/or written by each activation. The information about the read- and write-
sets together with the information about the relative ordering of activations can
then be used by subsequent optimizations such as the ones from Section 4.

The algorithm presented in this paper computes the abstract schedule and
the read-/write-sets in the four phases shown in Figure 3. Given the bytecode of a
whole program as input, a pre-processing phase extracts static information about
the program structure. This information is used by a standard points-to analysis
to propagate alias information and compute points-to sets for object fields and
program variables. Points-to information is necessary because activations are
normal objects that can be stored in fields and passed as parameters.

The third phase is the schedule analysis. During this phase we compute the
read- and write-sets for each activation and extract an abstract schedule from
the unconditional →-statements present in the program. The abstract schedule
is a directed graph with different node and edge types. The fourth phase takes
this graph and flattens it into the binary relations for sequential, exclusive, and
parallel activations.

V the domain of variables. V contains all the allocation sites, formal parameters,
return values, thrown exceptions, cast operations, and dereferences in the pro-
gram.

H the domain of heap objects. Heap objects are named by the invocation sites of
object creation operations.

F the domain of fields in the program. There is a special field elements to denote
an array access.

M the domain of implemented methods in the program. It does not include abstract
or interface methods.

N the domain of virtual method names used in invocations.

BC the domain of bytecodes in the program.

Fig. 4. The Datalog domains.

3.1 Datalog

Most phases of our analysis are formulated and implemented as Datalog pro-
grams. We chose Datalog because it is a concise high-level specification language
that has been shown to be well-suited for dataflow analyses and scalable to even
large real-world programs [18].

The basis of Datalog are two-dimensional tables called relations. In a relation,
the columns are the attributes, each of which is associated with a finite domain
defining the set of possible values, and the rows are the tuples that are part of
this relation. Figure 4 shows the domains that we use in this paper.

If tuple (x, y, z) is in relation A, we say that predicate A(x, y, z) is true. A
Datalog program consists of a set of rules that compute new members of relations
if the rule body is true. E.g., the rule:

D(w, z) : A(w, x), B(x, y), !C(y, z).

says that “tuple (w, z) is added to D if A(w, x), B(x, y), and not C(y, z) are all
true.” The Datalog runtime will apply rules until a fixed point has been reached
and no more tuples can be added to the relations.

3.2 Pre-processing and Points-to Analysis

The first two phases of the analysis implement a standard points-to analysis. For
space reasons, we only describe briefly the outcomes of both phases. An in-depth
explanation of the algorithms we use is given in [18].

Before the points-to analysis (implemented as a Datalog program) starts, a
pre-processor extracts information about the analyzed program and generates
input tuples that can be read by Datalog. The pre-processor generates many
different relations encoding information about type hierarchies, virtual method
calls, object creation, and more; in this paper, however, we are mostly interested
in the following two relations:

store : BC × V × F × V represents store statements. store(bc, v1, f, v2) says that
bytecode bc is a statement “v1.f = v2”.

load : BC × V × F × V represents load statements. load(bc, v1, f, v2) says that
bytecode bc is a statement “v2 = v1.f”.

The goal of the points-to analysis is to compute the following three relations
from the input relations generated by the pre-processor:

variablePT : V ×H is the variable points-to relation. variablePT (v, obj) means
that variable v can point to heap object obj.

heapPT : H × F ×H is the heap points-to relation. heapPT (obj1, f, obj2) means
that field f of heap object obj1 may point to heap object obj2.

invocationEdge : BC ×M is the relation of the resolved targets of invocation
sites. invocationEdge(bc,m) says that invocation bytecode bc may invoke
the method implementation m.

During the points-to analysis we treat schedule-statements as normal method
calls. This works because all the parameters for the activation are bound when
the schedule statement is executed even though the exact time when the acti-
vation will execute is not known. →-statements are ignored during this phase.

Whaley and Lam [18] describe various points-to analyses with a variety of
trade-offs between precision and computational cost. For the rest of the paper
we assume a context insensitive analysis with on-the-fly call graph discovery, but
other, more precise variants can be used.

3.3 Computing and Flattening the Abstract Schedule

The main task of the schedule analysis is to compute an abstraction of the
scheduling graphs that can occur at runtime. For this, the analysis must take
the schedule-statements for the initial creation edges and all →-statements for
additional happens-before edges into account.

In general, the safe and conservative assumption is to over-approximate par-
allelism. As an example, take the detection of data races. Two activations are
allowed to write to the same data if and only if they are sequentially ordered. If
the sequential execution cannot be guaranteed we must assume that both tasks
are potentially executed in parallel and report a data race if they access the
same data.

Because the analysis cannot rely on happens-before relationships that are
created conditionally, we only consider unconditional →-statements. Further, if
for a statement lhs→rhs the points-to analysis found that one or both variables
lhs and rhs may point to more than one activation object, the abstract schedule
must over-approximate parallelism by ignoring the happens-before edge because
it cannot guarantee the exact ordering of the involved activations.1

The core of the abstract schedule computation can be expressed in the fol-
lowing Datalog rules:

1 In this case, increasing the context-sensitivity can result in higher precision and
therefore smaller points-to sets which may allow the analysis to drop less edges.

multiple(v) :- variablePT(v, obj1), variablePT(v, obj2), obj1 != obj2.

singleton(v) :- !multiple(v).

happensBeforeEdge(source, target) :-

arrowStatement(lhs, rhs),

variablePT(lhs, source), variablePT(rhs, target),

singleton(lhs), singleton(rhs).

The relation multiple : V contains all the variables that may point to two
(or more) different objects whereas the relation singleton : V contains all vari-
ables not in multiple and thus pointing to at most one object. Given an arrow-
statement lhs→rhs, the happensBeforeEdge : H × H relation contains the
tuple (source, target) if the variables lhs and rhs point to the singleton
objects source and target respectively.

The points-to analysis can only track a finite number of heap objects (in-
cluding activation objects) but a program that contains loops and recursion can
create a potentially infinite number of objects. For this reason, filtering out am-
biguous →-statements is a necessary but not sufficient condition for computing
a conservative abstract schedule because a single object at analysis time may
represent multiple runtime objects.

In the example from Figure 1, there are potentially many activation objects
created at lines 14 and 15. Therefore, the happens-before edge map→write on
in line 17 is only valid without restrictions inside the same loop iteration. An
activation doMap() of a later iteration, e.g., is not guaranteed to happen before
a doWrite() activation of an earlier iteration.

To address this problem, we make use of the fact that a program in static
single assignment form (SSA) captures the flow of values between loop itera-
tions in the form of explicit Φ operations. The pre-processor described in Sec-
tion 3.2 treats a statement var3 = Φ(var1, var2) in the source program sim-
ilar to an object creation site. That is, it adds a new object phiObj to H and
records the assignment of phiObj to var3. Additionally, the preprocessor adds
the facts varIntoPhi(var1, phiObj) and varIntoPhi(var2, phiObj) to a re-
lation varIntoPhi : V × H indicating that variables var1 and var2 flow into
the phiObj.

With this information in place, the schedule analysis can compute the relation
phiEdge : H ×H with the following rule:

phiEdge(actObj, phiAct) :-

varIntoPhi(actVar, phiAct), variablePT(actVar, actObj).

A fact phiEdge(act, phi) means that the activation heap object act flows
into the phi heap object phi.

Figure 5 shows the mapInput()-task from Figure 1 and the abstract schedule
that is computed by the schedule analysis. Solid nodes represent normal acti-
vation nodes and dashed nodes are Φ activation objects. The dashed edges are
computed by the above phiEdge rule. In addition to the activation nodes, the
graph contains dashed boxes indicating loop boundaries: a solid node is inside a

Φ doWrite()

mapInput() doMap()
loop 1

task mapInput(Vector input) {
Activation lastWrite0 = now;
Iterator iterator = input.iterator();

label0:
 Activation lastWrite1 = Φ(lastWrite0, lastWrite2);

 if iterator.hasNext() == 0 goto label1;
 data = iterator.next();

Activation map = schedule this.doMap(data);
Activation write = schedule this.doWrite(map);

map → write;
 lastWrite1 → write;

lastWrite2 = write;
goto label0;

label1:
return;

}

global

Fig. 5. The mapInput() task from Figure 1 in SSA form and the abstract schedule.

dashed box if the schedule-statement is inside the loop body. The Φ nodes that
play the role of loop variables are placed in a special “header” area in the loop.
The loop information is computed by a structural analysis on a global interpro-
cedural SSA graph [10]. A special global box represents the whole program.

With the graph in Figure 5, we can deduce that the mapInput() activation
always happens before both the doMap() and the doWrite() activations. This
is because mapInput() is in the global context and connected to the other two
activations by creation edges. Further, the doWrite() activation is sequential to
itself because of the recursion through the Φ node. The recursion loop encodes
the fact that all doWrite() activations are ordered with respect to one another.

The doMap() activation, on the other hand, is parallel to itself, because it
is created inside a loop, as well as parallel to doWrite() because the happens-
before edge between them is created inside the loop 1 box and therefore has no
effect on the global context.

This example demonstrates that the effect of a happens-before edge gener-
ally depends on the loop context: in loop 1, we can say that doMap() always
happens-before doWrite() because those objects are created inside this loop; but
this is not true for the global perspective. Only Φ nodes allow us to establish
happens-before relationships across loop iterations.

Most optimizations work in the global context, because they transform the
source code which affects the whole program and not only a single loop iteration.
Therefore, the last phase of the schedule analysis flattens the abstract schedule in
the global context. The flattening process creates the three relations parallel :
H×H, sequential : H×H, and exclusive : H×H by using the abstract schedule
to find the type of relationship for each pair of activation objects.2

2 Deciding exclusivity requires further flow-sensitive analysis of the source code but
it can reduce the number of activations that are unnecessarily classified as being
potentially parallel.

3.4 Computing Read- and Write-Sets

The second part of the schedule analysis is to compute the read- and write-
sets for each activation. We capture the read and write sets in relations read :
H × BC × H and write : H × BC × H. A tuple read(act, bc, obj), e.g.,
states that activation object act may reach bytecode bc and this bytecode is a
load that may access object obj. The computation of the read and write sets is
straightforward and can be expressed in the following two Datalog rules (where
an underscore ‘ ’ means “any”):

read(act, bc, obj) :-

activationReaches(act, bc), load(bc, v, _, _), variablePT(v, obj).

write(act, bc, obj) :-

activationReaches(act, bc), store(bc, v, _, _), variablePT(v, obj).

The relation activationReaches : H ×BC is a simple reachability predicate
that starting from the task of an activation object follows all invocation edges
in the call graph to find all bytecodes that this activation may execute.

4 Optimizations Based on Schedule Analysis

In this section, we present three sample optimizations for parallel programs
that are all based on the same schedule analysis from Section 3. The first two
optimizations have been taken from the literature and target the two main syn-
chronization primitives, locks and transactional memory. The third optimization
is specific to our explicit scheduling model and tries to reduce the number of
happens-before relationships in a program thus reducing scheduling overhead
and potentially increasing parallelism.

4.1 Synchronization Removal

Like many imperative and object-oriented languages, Java provides a synchro-
nization mechanism based on locks. Whenever a method or block may access
data structures that are shared between multiple threads, the programmer must
guard the critical section with a lock, e.g., using the synchronized keyword.
Because a thread-safe library cannot know the context it is used in, it must con-
servatively assume a multi-threaded environment and guard all critical sections
that potentially access shared data. In many programs, however, a large number
of the locking operations may safely be removed because two parallel tasks never
contend for the same locks.

A critical section is required if two parallel activations act1 and act2 may
try to acquire a lock on the same object lockObj. Acquiring a lock requires
the execution of a dedicated monitor enter instruction that is associated with a
variable pointing to the lock object. Conversely, a critical section is unnecessary if
its guarding monitor enter is not required. The following Datalog rules compute
the set of required and unnecessary monitor enter bytecodes:

lockObject(monitorEnterBC, obj) :-

lockVariable(monitorEnterBC, v), variablePT(v, obj).

requiredMonitorEnter(monitorEnterBC1) :-

parallel(act1, act2),

activationReaches(act1, monitorEnterBC1),

activationReaches(act2, monitorEnterBC2),

lockObject(monitorEnterBC1, lockObj),

lockObject(monitorEnterBC2, lockObj).

unnecessaryMonitorEnter(monitorEnterBC) :-

!requiredMonitorEnter(monitorEnterBC).

If, in the example from Figure 1, the programmer had guarded the call
out.add() in the doWrite() task with a lock, the analysis would consider this
lock as unnecessary because all activations of doWrite() are ordered and the
parallel(act1, act2) clause is always false for two doWrite() activations. If
the programmer had also guarded the body of task doMap() with the same lock,
the above rules would consider all locks to be required because doMap() activa-
tions can happen in parallel with other doMap() and doWrite() activations.

Ruf [13] describes the same optimization but based on an analysis algorithm
that is specialized to the task of synchronization removal. One of the achieve-
ments is that this approach can remove 100% of all synchronization for the
special case of single threaded programs. Looking at the rules above, we can see
that our optimization has the same property. In a single threaded program, the
clause parallel(act1, act2) is always false and therefore all monitor enter
bytecodes will be classified as unnecessary.

4.2 Reducing Strong Atomicity Overhead

Transactional memory is a promising alternative to synchronization that avoids
many of the problems associated with locks. In a TM system, an atomic region
atomic{b}, where the block b is a list of statements, requires the runtime to
execute the sequence b as though there were no interleaved computation. When
the transaction inside the atomic region completes, it either commits, thus mak-
ing the changes visible to other processes, or it aborts, causing the transaction
to be rolled back and the atomic region to be re-executed.

A transactional system is said to have weak atomicity semantics if it allows
computations outside of transactions to be interleaved with transactions. Weak
semantics allow for a more efficient implementation but it sacrifices ordering and
isolation guarantees which can lead to incorrect execution of programs that are
correctly synchronized under locks [16].

Strong atomicity, on the other hand, requires memory accesses outside of
transactions to be accompanied by memory barriers, and this setup greatly in-
creases the overhead of strong atomicity. Guarding a memory access with a
barrier, however, is only necessary if it may conflict with a memory access inside
a transaction that may be executed in parallel.3

3 Strong atomicity semantics do not cover conflicting memory access outside transac-
tions.

The following Datalog rules decide for a given read- or write-bytecode (out-
side a transaction) whether it requires a read or write barrier:

readInsideTransaction(act, obj:H) :-

bcGuardedByAtomic(act, readBC), read(act, readBC, obj).

writtenInsideTransaction(act, obj:H) :-

bcGuardedByAtomic(act, writeBC), write(act, writeBC, obj).

requiresReadBarrier(readBC) :-

read(act1, readBC, obj),

writtenInsideTransaction(act2, obj),

parallel(act1, act2).

requiresWriteBarrier(writeBC) :-

read(act1, writeBC, obj),

writtenInsideTransaction(act2, obj),

parallel(act1, act2).

requiresWriteBarrier(writeBC) :-

read(act1, writeBC, obj),

readInsideTransaction(act2, obj),

parallel(act1, act2).

The relation bcGuardedBy : H ×BC is a simple reachability predicate that
contains all bytecodes that, starting from the task of a given activation object,
may be executed inside an atomic block.

Modulo the exact points-to analysis used4, the analysis presented here is
almost the same as the optimizations presented by Hindman and Grossman [6].
The difference is the additional clause parallel(act1, act2) in each of the
above rules. This means that if in the worst case the schedule analysis cannot
compute any happens-before relationships (and therefore conservatively classifies
all activations as parallel) our analysis is equivalent to [6]. If the schedule analysis
can compute relevant edges, however, our analysis is more precise allowing the
optimizer to remove more read- and/or write barriers.

4.3 Dependence Reduction

Dependence reduction aims at removing →-statements from the source code.
This can be beneficial in two ways:

– Removing a→-statement that creates a happens-before relationship between
two activations that are already (transitively) ordered can improve the per-
formance of later analyses as well as improve the generated code. Unneces-
sary transitive →-statements can be found by looking for transitive edges in
the schedule.

– Removing a →-statement between two activations that are otherwise not
ordered can increase the parallelism in a program.

4 Hindman and Grossman use a points-to analysis that distinguishes objects by type,
not by creation site [6].

1

2

3

4

1

2

3

4

(a) (b)

e

f

g

e

g

1

2

3

4

(c)

e'

g'

e

g

Fig. 6. Fixing the transitive ordering after removing the edge f.

Removing a non-transitive edge between two activations may be allowed if
the read- and write-sets of both activations are disjoint.

requiredEdge(act1, act2) :-

happensBeforeEdge(act1, act2),

write(act1, obj),

readOrWrite(act2, obj).

requiredEdge(act1, act2) :-

happensBeforeEdge(act1, act2),

readOrWrite(act1, obj),

write(act2, obj).

unnecessaryEdge(act1, act2) :- !requiredEdge(act1, act2).

When such an edge is removed, however, we must ensure that the transitive
ordering is kept intact. Take, for example, the schedule shown in Figure 6(a). If
the analysis finds that edge f is unnecessary, simply removing it results in the
schedule shown in Figure 6(b). This schedule is broken, because by removing
f the transitive ordering between node 1 and node 3 as well as the transitive
ordering between node 2 and node 4 that was present before the removal is
missing. After adding the additional edges e’ and g’ as shown in Figure 6(c) the
transitive ordering is correct again. The parallelism has been increased, however,
because activations 2 and 3 can now be executed in parallel. In [3] we present
more details about this optimization.

5 Implementation and Future Work

The Datalog parts of our schedule analysis have been implemented and can be
found on http://wiki.github.com/chmaruni/xsched/. We use the bddbddb Datalog
system. bddbddb is backed by binary decision diagrams (BDDs) and has been
shown to scale to large programs using over 1014 contexts [18]. The pre-processor
and the graph flattening phase are currently under development.

The next step is to integrate our optimizations with a compiler to produce
optimized code and to empirically measure how our optimizations compare to
the ones from the original papers.

6 Related Work

The happens-before ordering was first formulated by Lamport [7] and is the
basis of the Java memory model [8]. Despite its significance in the memory
model, in Java happens-before edges can be created only implicitly, e.g., by
using synchronized blocks or volatile variables.

The goal of a pointer analysis is to statically determine when two pointer
expressions refer to the same memory location. Steengaard [17] and Andersen
[2] laid the groundwork for the flow-insensitive analysis of single threaded pro-
grams. Because points-to analysis is undecidable in the general case, however,
researchers developed a large collection of approximation algorithms specialized
for different problem domains [5], including parallel programming.

Rugina and Rinard [14] describe a pointer analysis for programs with struc-
tured fork-join style concurrency. For each program point, their algorithm com-
putes a points-to graph that maps each pointer to a set of locations. By capturing
the effects of pointer assignments for each thread, their algorithm can compute
the interference information between parallel threads. Computing the interfer-
ence information relies on the lexical scoping of the parallel constructs; it cannot
handle unstructured parallelism.

By combining pointer and escape analysis, subsequent projects were able
to extend their analyses beyond structured parallelism [15, 11]. Both analyses
compute points-to information but do not directly answer as to how two tasks
are executed with respect to each other. Further, the tight integration of the
pointer analysis with the escape analysis and concurrency analysis is contrary to
our goal of separating the concerns of schedule analysis from points-to analysis.

A may-happen-in-parallel (MHP) analysis can be used to determine what
statements in a program may be executed in parallel [12]. Without flow sensi-
tivity, relating two program statements is of limited use for analyzing programs
with unstructured parallelism. If two threads execute the same statements but
in different contexts, for example, a context insensitive MHP analysis might un-
necessarily classify the statements as parallel. When the programming language
is restricted to structured parallelism, as is the case for X10, an intra-procedural
MHP analysis can achieve good results, however [1].

Barik [4] describes a context and flow-sensitive may-happen-before analysis
that distinguishes threads by their creation site. By using threads as their model,
however, they must conservatively assume that a parent thread in the tree runs
in parallel with each child thread. In our model a parent activation is known to
happen before any child activation because the creation tree is a spanning tree
embedded in the schedule.

7 Concluding Remarks

In this paper we showed how an independent schedule analysis can form the
basis for different optimizations of parallel programs.

In previous compilers, each optimization had to come with its own model
and analysis of concurrent computation. The introduction of an independent

schedule analysis factors out the common aspects of these optimizations, making
it easy to not only combine multiple optimizations but also to derive new ones.
Combining the optimizations discussed in this paper, for example, allows the
optimization of programs that intermix transactional memory with traditional
locking. Moreover, the optimization for synchronization removal could be easily
adapted to remove atomic sections as well.

The key factor that enabled this approach was a model of parallel computa-
tion that allowed a static analysis of the dynamic schedules to be encountered
at runtime. Exposing the schedule (and allowing a compiler to analyze and op-
timize it) is a necessary step in the path towards improving the optimization of
parallel programs.

References

1. S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar. May-happen-in-parallel
Analysis of X10 Programs. In PPoPP, 2007.

2. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. Ph.D thesis, DIKU, University of Copenhagen, 1994.

3. C. M. Angerer and T. R. Gross. Parallel Continuation-Passing Style. In PESPMA,
2010.

4. R. Barik. Efficient Computation of May-Happen-in-Parallel Information for Con-
current Java Programs. In LCPC, 2005.

5. M. Hind. Pointer Analysis: Haven’t We Solved This Problem Yet? In PASTE, 2001.
6. B. Hindman, D. Grossman. Strong atomicity for Java without virtual-machine sup-

port. Tech. Rep. UW-CSE- 06-05-01, May 2006.
7. L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM 21, 7 (1978).

8. J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In POPL, 2005.
9. N. Matsakis, T. Gross. Programming with Intervals. In LCPC (2009).
10. S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers, 1997

11. M. G. Nanda and S. Ramesh. Pointer Analysis of Multithreaded Java Programs.
In SAC, 2003.

12. G. Naumovich, G. Avrunin, and L. Clarke. An Efficient Algorithm for Computing
MHP Information for Concurrent Java Programs. In ESEC/FSE-7, 1999.

13. E. Ruf. Effective Synchronization Removal for Java. In PLDI, 2000.
14. R. Rugina and M. Rinard. Pointer Analysis for Structured Parallel Programs. In
TOPLAS, 2003.

15. A. Salcianu, M. Rinard. Pointer and Escape Analysis for Multithreaded Programs.
In PPoPP, 2001.

16. T. Shpeisman et al. Enforcing Isolation and Ordering in STM. In PLDI, 2007.
17. B. Steensgaard. Points-to Analysis in Almost Linear Time. In POPL, 1996.
18. J. Whaley and M. S. Lam. Cloning-Based Context-Sensitive Pointer Alias Analysis

Using Binary Decision Diagrams. In PLDI, 2004.

