
A Timing Service for
Policy-Based

Management Systems

Christoph Angerer – christoph.angerer@inf.ethz.ch
Thomas Gross – thomas.gross@inf.ethz.ch

Computer Systems Institute
ETH Zurich

PBM Approach: Specifying Networks in terms
of high-level (business) entities instead of
low-level tech. features

Adaptive PBM: Policies adapt to changes and
new situations

Adaptive Policy-Based
Management

Adaptive if:
Policy-activation not only based on fixed dates
but takes environmental and internal events

into account

2Slide

Overview

1. Basic Idea: Separating Events from Times

2. Related Work: Multi-Media Time Models

3. A Model for Timing Specifications:
* Clocks,
* Scalar/Indefinite/Dependent Time,
* Timing Specifications

4. Architecture and Integration of the Timing Service

5. Concluding Remarks
3Slide

Basic Idea (1):
Simple Policy

If:

 User is CEO

What:
 Application is

 “Streaming Video”

When:
 Time is between 9 a.m.

 and 11 a.m.

Then:
 User is entitled to a

 service level
“Premium”

 with guaranteed

 throughput & latency

4Slide

If:

 User is CEO

What:
 Application is

 “Streaming Video”

When:
 Time is between 9 a.m.

 and 11 a.m.

Then:
 User is entitled to a

 service level
“Premium”

 with guaranteed

 throughput & latency

Basic Idea (2):
Explicit Start and end Events

Start: 9 a.m. each

End: 11 a.m. each
} Interval

5Slide

If:

 User is CEO

What:
 Application is

 “Streaming Video”

When:

Then:
 User is entitled to a

 service level
“Premium”

 with guaranteed

 throughput & latency

Start: 9 a.m. each

End: 11 a.m. each

Event: Briefing starts

Event: Briefing ends

Basic Idea (3):
Separating Events from Times

Time: 9 a.m. each day

Time: 11 a.m. each day

6Slide

Point-based

Interval-based: 10 basic timing patterns,
e.g.:

Related Work:
Multi-Media Time Models

< = >

delayed()
before()

7Slide

See: Thomas Wahl and Kurt Rothermel. Representing time in multimedia systems

Functions that
compute a scalar
value at any time

Can count
anything, e.g., #
sold units

No need to be
monotonically
increasing, e.g.,
countdown clocks

Clocks

1.1. 2.1. 3.1. 4.1. 5.1.

10.000

20.000

30.000

40.000

50.000

5 4 3 2 1

8Slide

Defined in respect to a clock

Within a clock: total ordering

Between clocks: additional constraints
(intervals) or potentially concurrent

Operators: <, =, >, and ||

Scalar Times

c1
e1.1 e1.2 e1.3

c2
e2.1 e2.2 e2.3

I(e1.2, e2.2)

9Slide

Not associated with a clock (i.e., no
scalar timestamp exists)

Compares || to all other times by
default

Additional constraints may define a
period in which the time is armed

Indefinite Times

c2
e2.1 e2.2 e2.3

armeddisarmed disarmed

10Slide

Timing constraints (“arrows”) introduce
“<” relations between times

Constraints increase partial ordering of
the time (event) space

Constraints are mostly created implicitly:

defining the lifetime of a resource

creating a higher-level temporal
relationship (e.g., “A while B”)

Timing Specifications

11Slide

start-event

0..*

startingIntervals

end-event

0..*

endingIntervals

happens

triggers

Time

isAfter(Time aTime):boolean
isBefore(Time aTime):boolean
isEqual(Time aTime):boolean
isConcurrent(Time aTime):boolean
strike():boolean

Interval

isBefore(Interval aInterval):boolean
isWhile(Interval aInterval):boolean
startsIn(Interval aInterval):boolean
...

Event

setTime(Time aTime):void
getTime(Time aTime):Time
happened():void

Resource

Event
Sequence

Timing
Condition

1..3

Timing
Pattern

start-event

0..*

startingIntervals

end-event

0..*

endingIntervals

happens

triggers

when

happens

Time

isAfter(Time aTime):boolean
isBefore(Time aTime):boolean
isEqual(Time aTime):boolean
isConcurrent(Time aTime):boolean
strike():boolean

Interval

isBefore(Interval aInterval):boolean
isWhile(Interval aInterval):boolean
startsIn(Interval aInterval):boolean
...

Event

setTime(Time aTime):void
getTime(Time aTime):Time
happened():void

Clock

currentTime():int

Indefinite
Time

earliest():Time
latest():Time

Scalar
Time

getScalar():int
setScalar(int s):void

Dependent
Time

getParent():Event
setParent(Event e)

Resource

Event
Sequence

Timing
Condition

1..3

Timing
Pattern

before
while
...

Implementation Model for
Timing Specifications

start-event

0..*

startingIntervals

end-event

0..*

endingIntervals

happens

triggers

Time

isAfter(Time aTime):boolean
isBefore(Time aTime):boolean
isEqual(Time aTime):boolean
isConcurrent(Time aTime):boolean
strike():boolean

Interval

isBefore(Interval aInterval):boolean
isWhile(Interval aInterval):boolean
startsIn(Interval aInterval):boolean
...

Event

setTime(Time aTime):void
getTime(Time aTime):Time
happened():void

12Slide

Architecture of the Timing
Service

Runtime

Action
Handler

Scheduler

Query API

Timing Specification

Timing
Constraints

Resource
Table

Repository
13Slide

PBM System

Integration with existing
Systems

Policy
Repository

Policy
Enforcement

Point

Policy
Decision

Point

14Slide

Timing Service

Proposed Application Domain
Authentication, Authorization, and
Accounting of distributed resources in Peer-
to-Peer networks

No central authority: Users are responsible
for own resources

Session management

Granting read/write access to files during
a session

“After the session some participants still
need read access until the project ends”

15Slide

Concluding Remarks
The separation of the events from the times they
actually happen offers great flexibility for A-PBM

Interval-based multi-media time models provide easy to
use and easy to understand timing patterns

But: Experience with larger (P2P) systems is still missing

Mutual dependencies of policies could lead to an
explosion of complexity

Efficient user interfaces for entering and managing all
the timing constraints have to be developed

Application in distributed and decentralized P2P
networks where users/devices without global view join
and leave the network arbitrarily has to be tested

16Slide

Thank you for your
attention...

