
Model and Architecture of a Timing Service for
Adaptive Policy-Based Management Systems

Christoph Angerer
Computer Systems Institute

ETH Zurich
CH-8092 Zurich

Email: christoph.angerer@inf.ethz.ch

Thomas Gross
Computer Systems Institute

ETH Zurich
CH-8092 Zurich

Email: thomas.gross@inf.ethz.ch

Abstract— Policy-Based Management (PBM) is a
promising approach to realize adaptivity in networks
that would be hard — if not impossible — for ad-
ministrators to configure manually. In PBM systems,
the network configuration is not directly expressed in
terms of low-level properties, such as IP or MAC
addresses; rather, complex business entities, such as
users or departments, can be defined and allow the
administrators to specify high-level network policies.

Even though PBM can reduce the effort for managing
complex networks significantly, today’s solutions lack a
generic way for expressing adaptive policies. A PBM
system can be called adaptive if the decision of when
and in which order policies are activated is not only
based on fixed predefined dates but the system also takes
environmental and internal events into account.

In this paper we describe a model of adaptive timing
constraints and introduce an architecture for executing
timing specifications (sets of constraints). Within a
timing specification, the administrator usually creates
single constraints only implicitly by defining the lifetime
of managed resources, sequences of events, and high-
level temporal relationships between them. Because each
timing constraint defines a < relation between two single
events, a timing specification can be described as a
partial ordering of events over the event space. During
execution, a Timing Service triggers PBM systems to
activate, inactivate, or adapt management policies ac-
cording to the timing specification.

I. INTRODUCTION

Today, specialized communication channels are in-
troduced for various applications such that each of
these channels requires a unique quality of service
(QoS) from the underlying network. Some appli-
cations, such as video streaming or voice over IP
(VoIP), demand certain guaranteed bandwidth and
throughput; others have special security or manage-
ment constraints, often summarized as authentication,
authorization and accounting (AAA).

One effective way to provide an environment in
which the various applications can coexist is to con-

0This work was funded, in part, by the NCCR “Mobile Infor-
mation and Communication Systems”, a research program of the
Swiss National Science Foundation.

figure the network itself appropriately (i.e., its inter-
mediate devices such as peers, routers, or switches).
Virtual networks (VLANs) on top of the physical
network, for example, are often used to segment the
network into zones where each zone can offer a certain
guaranteed quality of service. A segment may be
expressed as a set of properties such as the used
protocols, the IP- and/or MAC-address, or even on a
per-user basis. While — in theory — this segmentation
could be realized by software on the application layer,
it is much more efficient to implement it on a lower
level [16]. Switched Networks, for example, work on
the MAC layer: Through dynamic configuration of the
switches, the network topology itself can be adapted
to the actual usage of the network.

Managing networks on such a fine-grained level is
a complex and error-prone task, however. All network
devices must be individually set up and tested in
a complex environment. At the same time the re-
quirements on the network are constantly changing:
new hardware is introduced, old hardware is removed,
devices join and leave the network, new applications
require new QoS guarantees, and users move in phys-
ical as well as in organizational space.

Policy-Based Management (PBM) is a promising
approach to simplify management of complex net-
works [9]. RFC 3198 defines a policy to be a “definite
goal, course or method of action to guide and de-
termine present and future decisions” that is realized
as a set of rules to administer, manage, and control
access to network resources [15]. Policies allow the
administrators to specify a network in terms of busi-
ness entities, like users or organizations, rather than
in terms of low-level network features such as IP and
MAC addresses. These policy rules usually follow IF,
WHAT, WHEN, and THEN logic (example adopted
from [4]):

If: The user is CEO of the company
What: the application is watching streaming
video
When: the time is between 9 a.m. and 5 p.m.
Then: the user is entitled to a service level

Premium that guarantees a throughput of
2Mbps and an end-end latency of no more
than 150ms.

Even though policies can reduce the effort for
network management significantly, they are too static
for a lot of dynamic management problems. For man-
aging networks in dynamic organizations policies must
be adapted over time to respond to changes in the
environment.

In fact, project managers face problems similar
to network administrators in respect to planning and
managing highly dynamic systems: Predicting the ex-
act project end or joining and departure of project
members, for example, can be difficult not only for
long running projects. In such cases, managers often
use project management tools to model the timing
constraints they must deal with. Applications like MS
Project [12] allow a manager to define fixed and
definite events, such as the project start date or certain
milestones. For elements where a definite time is not
yet known, constraints, like minimal and maximal
durations or known interdependencies of tasks, can be
provided; the application then assures that all these
constraints are met in the final plan.

One major drawback of the Policy Core Information
Model (PIM) described in RFC 3060 [9] and extended
by RFC 3460 [10] is the lack of a method for spec-
ifying such event-based timing constraints. In PIM,
timing constraints are expressed as time periods either
in local time or UTC time: A policy is said to be
‘active’ within its associated time period only. Various
additions allow more fine-grained specifications by
specifying masks for the months of a year, days of
a month, days of a week, and times of a day.

In all these cases the exact time when the policy
becomes active must be known in advance. But just
like high-level business entities can be used in a net-
work policy, one may analogously want to use higher
level constructs for expressing temporal dependencies:
Instead of providing definite times for each policy an
administrator may also want to provide logical (or
indefinite) times such as ‘while our special offer is
valid, the help-desk gets more bandwidth’ or ’after
user A has retired, policy B expires and policy C steps
in’.

In this paper, we propose a framework for spec-
ifying such high-level timing constraints as well as
an architecture to integrate these timing specifications
with existing PBM systems. In the next section we
present related work in the field of policy-based man-
agement. Section III presents a model that is capable
of expressing adaptive timing constraints. A possible
architecture of a Timing Service (TS) as well as our
current implementation is described in Section IV.
Finally, Section V concludes the paper.

II. RELATED WORK

This work employs techniques developed for syn-
chronizing media playback in multimedia systems
to Policy-Based Management (PBM). PBM is cur-
rently attracting considerable attention as an enabling
technology for managing distributed Multi-Protocol
Label Switching (MPLS) environments, large scale IP
networks, and heterogeneous information infrastruc-
tures [17]. PBM systems aim at methods for manag-
ing quality of service in enterprise networks and for
controlling access to resources. Despite their common
usage, however, PBMs are not restricted to network
management only. Because the “policy classes and
associations defined in this model are sufficiently
generic to allow the representation of policies related
to anything” [9] one can also use this framework to
consider scenarios like session management in collab-
orative peer-to-peer applications or even controlling
access to buildings

A. Policy Based Management

The IETF has published miscellaneous RFCs to
specify the services and protocols for PBM sys-
tems [9], [10], [15]. Even though implementations and
case studies exist that provide a proof of concept of
these specifications, Law and Saxena [7] claim that
the original design does not scale for large networks.
Instead, they propose an alternative multitiered archi-
tecture in which middle-tier agents offer flexibility
and scalability to the design and support load bal-
ancing mechanisms. The multi-tier architecture allows
the system to scale even for large networks, but it
does not address the problem of specifying temporal
relationships between policies.

Access control models such as Role Based Access
Control (RBAC) which are commonly associated with
PBM systems require the administrators to model
the human organization and roles in detail [2], [5],
[13]. However, fluctuations in human communities, the
heterogeneity of networks, and constantly changing
resources demand more flexible approaches. Much
work done to adapt RBAC for realizing dynamic
scenarios concentrates on how the organization is
modeled. Extensions to RBAC with a temporal com-
ponent as done by Bertino et al. [1] rely on temporarily
enabling or disabling the permissions of entire roles.
This approach requires a detailed knowledge of the
specific times, such as the exact dates or weekdays
when roles should become active or inactive.

Large and complex networks do not ocurr only
in controlled environments; rather, they can also be
highly dynamic and unconstrained. The Internet is
an example of a large community of resources that
must be managed in an environment characterized by
decentralized, non-hierarchical decision making in the

32

1

1 2 1 2

before(1)

while(1, 2)

overlaps(1, 2, 3), i {0}

cross(1, 2), i {0}

1
1

1

cobegin(1) coend(1) beforeendof(1), i {0}

1 2

delayed(1, 2), i {0}

1 2

startin(1, 2), i {0}

1 2

endin(1, 2), i {0}

Fig. 1. Basic timing patterns (adopted from [14])

presence of distributed resource ownership. Feeney
et al. [8] present a community-based model for the
management of policies in the context of a large
Internet community. Their central grouping construct,
called a community, simplifies the specification of
organizations whose internal structures are not well-
defined. However, they focus on modeling structural
uncertainty (hierarchies and groups) while we focus
on how to deal with temporal uncertainty.

B. Representing Time in Multimedia Systems

Multimedia systems have led to the development of
various models for expressing temporal relationships
between single entities. Multimedia systems integrate
a variety of time-based media items, such as audio,
video, text, and images.

When playing back the media, these systems must
assure the correct temporal appearance of the sin-
gle items by a process called synchronization. The
schedule for how the synchronization must be done
is specified, for example, in the form of XML-files
that define when, where, and how long a certain item
should appear on the screen; such structures therefore
play the role of a timing specification. One famous
example of this approach is SMIL, the Synchronized
Multimedia Integration Language [6].

Two approaches have been developed for expressing
the temporal interdependencies of the media items:
point-based models and interval-based models. While
the elementary units in point-based models are discrete
events in a one-dimensional time space (where an
event can happen before, simultaneous, or after
another event), interval-based models describe rela-
tionships of whole time intervals (for example, interval
α while interval β). Wahl and Rothermel [14] present
the ten basic time interval patterns depicted in Figure
1, which are capable of expressing all temporal rela-
tionships between two intervals. The work presented in
this paper is based on these time patterns for modeling
temporal relationships between policies or resources.

III. A MODEL FOR SPECIFYING ADAPTIVE TIMING

CONSTRAINTS

Most multimedia systems model timing constraints
as a set of events associated with scalar timestamps.
The events tell the system when it is supposed to
start or stop a piece of media during playback. The
timestamps are defined in respect to one or more
clocks (usually counting the number of samples that
have been played until the current movie time at a
given rate) that specify the speeds and durations of
how the individual media chunks must be presented.

Due to their intended usage of playing back mul-
timedia files, the time model, be it point-based or
interval-based, allows arranging the elements on this
one-dimensional timeline only. This arrangemetn re-
quires a designer to associate definite clock-times with
each of the events — an exact timestamp when a
certain event is supposed to happen.

In current time-based systems, indefinite (logical)
time definitions are often not considered because, the
designers are aware of the detailed sequence of events.
Thus a designer knows, in advance of timing the
time events, the exact positions of decision points
where a spectator may be allowed to interact with
the application and therefore may influence the media
presentation.

This concept is also common in current policy
models that consider only relatively simple timing con-
straints (i.e., fixed and periodically recurring events).
For expressing a policy like ‘grant the CEO higher
bandwidth for watching a broadcast each Monday
between 5:00 PM and 7:00 PM’ this model is sufficient
(even though this constraint could be further refined by
‘but not after the end of the broadcast’ in case it ends
early). However, simple constraints are not expressive
enough to activate a policy at a defined event (i.e., an
event that is well-known and can be identified) but at
an indefinite time (i.e., the exact occurrence can at best
be estimated); ‘after retirement’ would be an example
for such an event.

The basic idea behind the model presented in this
paper is to express a policy as a time interval with
given start and end events. These events are logical
events that are separated from the definition of the
time when they actually happen. This decomposition
adds the flexibility that is needed for adaptive PBM
because it allows to associate an event not only with
a scalar timestamp but also with higher-level temporal
relationships to other events. The next section provides
some general definitions and terms that will be used
in the succeeding sections. The single model elements
are then described in detail in Sections III-B and III-C.

A. Introductory Definitions

1) Clocks and Timestamps: Let N be the set of non-
negative integer numbers. Any scalar s ∈ N that is
used to refer to a time is called a timestamp. A clock
is a function: N → N that maps the current global time
τ to a current clock-dependent timestamp (i.e., when
called at any time, a clock returns its current scalar
value). The current timestamp of any given clock c ∈
C of the set of all possible clocks C is denoted by
c(τ).

Clock functions do not need to be monotonically
increasing (i.e., a clock does not necessarily count
forward). An example for this is a ‘countdown’ clock.

2) Time Definition: We call a time definition (or
simply time) t ∈ T , where T is the set of all possible
time definitions, to be definite if the function of the
form:

allOccurrences : T × C → N∗

is defined for t. allOccurrences returns a set of
scalar timestamps for a given time definition t and a
clock c and is already a way to express simple timing
constraints. The definition:

allOccurrences(t, c) :=

{1, 8, 15, . . .} if t = t1

∧ c = c1

{} else.

for example constrains t1 to a period of seven days
(in respect to clock c1 that counts days). There can
be more than one timestamp for each time definition
because it is possible to express recurring times, such
as ‘every Monday at 12:00’.

We call t to be indefinite if allOccurrences is
undefined for t. In all cases, being ‘indefinite’ is a
property that is related to the future. Take, for example,
an indefinite time definition t2 = ‘switch turned on’.
As soon as t2 happens (i.e., the switch is turned on), a
scalar timestamp exists; but it is still indefinite for the
future (i.e., it is unknown when the switch is turned
on the next time).

Since allOccurrences is the association between
all the definite times in T with all clocks in C,
indefinite times are not associated with clocks directly.
Instead, they are associated with the occurrence of
either system internal events or with detected external
events. As a consequence, an implementation of the
Timing Service must provide a mechanism to use
(service external) events in the time definitions and
to monitor the environment for their occurrences.

Furthermore, time definitions like t2 require the
Timing Service to first understand the syntax and
semantics of this expression and then to monitor the
environment (the state of the switch in this case).
Note, that due to the linguistic expression of t2, it

may sound as being a high-level event; but in this
example, the expression denotes only a simple trigger
for a logical event like ”light turned on” or ”TV turned
on”, depending on the actual function of the switch.
The meaning is carried in the event, not in the time.
However, defining such a time definition language and
monitoring mechanism is out of scope of this paper.

3) Next Occurrence and Time Comparison: The
next occurrence of a definite time, that is, the smallest
of all occurrences that is still equal or bigger than the
current time of the clock is given by nextOccurrence
with the signature:

nextOccurrence : T × C → N

and the definition:

nextOccurrence(t, c) := x ∈ O

with x ≥ c(τ) ∧ @y ∈ O : (y 6= x ∧ y ≥ c(τ) ∧
y < x) where O = allOccurrences(t, c). When no
timestamp of a next occurrence of t can be computed,
nextOccurrence(t, c) is undefined.

Two times t1 and t2 can be compared with the
operators <, =, >, and ||. The comparison operators
<, =, and > are transitive, that is:

t1 R t2 ∧ t2 R t3 ⇒ t1 R t3

with t1, t2, t3 ∈ T ∧ R ∈ {<,=, >}

If nextOccurrence(t1, c1) and
nextOccurrence(t2, c2) are defined for the same
clock c, i.e., c1 = c2, the operators <, =, and > are
defined according to the corresponding operators in
N, and || is always false.

If the next occurrences are undefined or the clocks
differ, the times are said to be potentially concurrent
(noted as ||). These events are considered to happen in
parallel as long as no further constraints (i.e., intervals,
see Section III-A.7) are given.

4) Earliest and Latest Occurrence of Indefinite
Times: By definition, it is not possible to tell the next
occurrence of an indefinite time in terms of a single
scalar value. However, it is possible to declare a time
frame (earliest(t), latest(t)) in which an indefinite
time t may occur. Here, earliest(t) is defined as the
latest time of all predecessors of t:

earliest(t) := x ∈ T ∪ {`}

with x < t ∧ @y ∈ T : (y 6= x ∧ y < t ∧ y > x) and
the latest possible occurrence latest(t) is the earliest
time that directly succeeds t:

latest(t) := x ∈ T ∪ {a}

e1_1 e1_2 e1_3

e2_3e2_2e2_1

i=(e1_2, e2_2)

C1

C2

Fig. 2. Example of two clocks c1 and c2 with six event
happenings and one interval i

with x > t ∧ @y ∈ T : (y 6= x ∧ y > t ∧ y < x).
` denotes the time that compares smaller with every
other time, i.e., ∀t ∈ T :`< t, and a is the time that
compares greater with every other time, i.e., ∀t ∈ T :
t <a.

5) Striking a Time: A clock c ∈ C is said to strike a
time t ∈ T when the clock reaches the next occurrence
of the time:

strikes(t, c) :=

1 if nextOccurrence(t, c) =

c(τ)
0 else.

6) Events: Each event is associated with a certain
time time(e). When a clock strikes the time of an
event e ∈ E the event is said to happen:

happens(e) :=

1 if ∃c ∈ C :

strikes(time(e), c) = 1
0 else.

If an event is associated with an indefinite time the
event is said to be armed when any clock c strikes the
earliest possible occurrence of time(e):

armed(e) :=

1 if ∃c ∈ C : earliest(time(e)) ≤

c(τ) ≤ latest(time(e))
0 else.

When an event is armed the system has to prepare for
possible happenings of the event. If an event is not
armed it is called disarmed.

7) Intervals: A meaningful period between two
events is called an interval. An interval is bounded by
exactly two events, a start event and an end event, and
it is directed forward in time. It therefore constrains
the times of its start and end events concerning the
< operation. When given two events e1 and e2 with
time(e1)||time(e2), the creation of an interval i :
(e1, e2) results in a new ordering relation time(e1) <
time(e2). If time(e1) is not concurrent to time(e2),
time(e1) < time(e2) must be true for all occurrences
of the times before (e1, e2) can be created. Therefore,
every creation of an interval preserves or increases the
degree of order in the event-space.

By adding a ordering relation to the event space,
intervals play an equivalent role as messages in models

armed

disarmed

inactive active

startEvent.isArmed()
NOT (
startEvent.isArmed()
)

startEvent.happens()

endEvent.happens()

Fig. 3. State chart of interval activation

for synchronized clocks, such as vector clocks or
dependency sequences [11].

Figure 2 depicts an example of events whose times
are defined in respect to two different clocks c1 and
c2. Each clock defines a totally ordered space for its
timestamps (since timestamps are elements of N) and
therefore it can be stated that e1 1 ≤ e1 2 ≤ e1 3.
Furthermore, e1 1||e2 1 and e1 3||e2 3. However, since
the interval i(e1 2, e2 2) implies e1 2 < e2 2, it is
further true that e1 1 < e1 2 < e2 2 < e2 3.

The terms armed and disarmed can also be applied
to intervals. Figure 3 depicts the internal states of
an interval: When the start event of an interval gets
armed, the interval gets armed, causing the system
to prepare for a possible start of the interval. When
the start event gets disarmed again, the whole interval
gets disarmed. Being armed, the interval is said to
become active when its start event happens. If the start
event has not (yet) been happening or if the end event
happens, the interval is said to be inactive.

8) Timing Specification: Definite and indefinite
times, events, and intervals provide the basis upon
which more complex timing specifications are built.
We define a timing specification spec as a tuple
(E, I,R) where:

• An event e = (id, t) is a tuple that binds an
identifier id to a time definition t. E then denotes
the set of all events;

• I ⊆ E×E is a set of intervals where each interval
i = (e1, e2) is defined by two events: a start event
e1 and an end event e2;

• and R : I×I are binary timing relationships such
as before or while between two intervals. In our
model, we use the 10 basic patterns for timing

start-event

0..*
startingIntervals

end-event

0..*
endingIntervals

happens

triggers

when happens

Time

isAfter(Time aTime):boolean
isBefore(Time aTime):boolean
isEqual(Time aTime):boolean
isConcurrent(Time aTime):boolean
strike():boolean

Interval

isBefore(Interval aInterval):boolean
isWhile(Interval aInterval):boolean
startsIn(Interval aInterval):boolean
...

Event

setTime(Time aTime):void
getTime(Time aTime):Time
happened():void

Clock

currentTime():int

Indefinite
Time

earliest():Time
latest():Time

Scalar
Time

getScalar():int
setScalar(int s):void

Dependent
Time

getParent():Event
setParent(Event e)

Fig. 4. Model of intervals, events, and time

relationships adapted from [14] and depicted in
Figure 1.

Compared to point-based models, interval-based
models have the advantage to offer a higher level of
abstraction that can facilitate a more intuitive way of
specifying timing constraints. It is, for example, very
straight forward to define ‘apply policy A while the
broadcast runs‘, while it is clearly harder to specify
this constraint as ‘policy A starts after the broadcast
has started and ends before or together with the
broadcast’. For this reason we propose an interval-
based model for timing specifications.

B. Basic Timing Entities

As described in the previous section, an Interval
marks a certain contiguous period in time. Figure 4 de-
picts the basic entities of the interval-based time model
together with their relationships: Intervals, Events,
and Times. The Interval object defines comparison
methods that correspond to the timing patterns shown
in Figure 1. The boundaries of any Interval are given
by exactly two Events: a start-event and an end-
event. Each event is associated with a Time object
that implements the comparison operators <, =, >, ||.
When the timing specification is executed, these time
objects trigger the Event.happened() method when
a clock strikes the time.

In this model, three concrete types of time exist.
A DependentTime binds the time of an event e2

to the happening of a parent event e1. Therefore, a
DependentTime is struck in exact the same moment
as the parent event e1 happens (i.e., the time of e1 is
struck).

Interval

Resource Event
Sequence

Timing
Condition

1..3

Event

2

0..*

Timing
Pattern

2

* before
* while
* startin
* ...

Fig. 5. Model for timing specifications

The second type of time object is the Scalar-
Time. The ScalarTime is specified as a single scalar
value in respect to a certain Clock object. Whenever
Clock.currentTime() equals the specified scalar, the
time is struck.

One could imagine several types of such Clocks;
examples are a common ‘system time’ clock, a ‘num-
ber of currently logged in users’ clock, or even more
exotic clocks like a ‘currently sold units’ clock. It is
possible to mix different types of clocks in the same
model; the only requirement is that all instances of
clocks can compute a single scalar when called at a
certain point in (world-)time.

The IndefiniteTime class implements an indefi-
nite time as introduced in Section III-A. The Indef-
initeTime.earliest() and IndefiniteTime.latest() are
the implementations of the corresponding functions
defined in Section III-A. They traverse all intervals
that start (respectively end) in the associated event
for finding the earliest (or latest) possible time the
IndefiniteTime can occur.

C. Modeling Timing Specifications

Figure 5 shows the basic entities of the Timing
Specification model, with the Interval class described
in the previous section being the central element.
There exist three concrete types of intervals which
carry different semantics: The lifetime of a resource,
a simple sequence of two events, and the lifetime of a
more complex timing condition following the timing
patterns depicted in Figure 1.

Every Resource that is managed or that is used for
management by the system, such as policies or users,
is modeled as an interval. When the interval starts,
a resource (instance) ‘is born’ and it ‘dies’ when its
interval ends. This lifecycle affects resource instances

and not their meta-definition. For example, when an
interval I starts or ends, it may cause a policy A
(the resource) to become active or inactive; this can
translate into ‘an instance of policy A is born’ (or
‘has died’ respectively). The metadata describing the
policy is not affected (as long as the metadata are not
managed by such a time model themselves, of course).
Accordingly, the expiration of a user means that the
user left the managed system and not that he has ‘died’
literally.

An EventSequence implements a simple interval
between exactly two events mapping directly to one
arrow of the timing patterns in Figure 1.

TimingConditions are complex temporal relation-
ships between two intervals. Each timing condition
is associated with a TimingPattern that specifies the
basic structure of the condition following the patterns
of Figure 1. Depending on the associated pattern,
the TimingCondition manages one to three instances
of EventSequence objects (corresponding to the
arrows).

All TimingConditions have a well-defined lifetime
and are therefore modeled as intervals themselves, i.e.,
they are associated with a start and an end event. The
concrete start and end event of a timing condition
depends on the applied timing pattern. When the
arrows in Figure 1 are interpreted as messages that
are sent between the intervals, the first sending event
and the last receiving event denote the boundaries of
the interval. For example, the boundaries of a timing
constraint r = i1 before i2 between two intervals are
defined as:

(endEvent(i1), startEvent(i2))
while the boundaries for a r = i1 cobegin i2 con-
straint would be:

(startEvent(i1), startEvent(i2))
Because TimingConstraints are modeled as inter-

vals, recursive relationships allow the construction of
higher order timing constraints.

IV. IMPLEMENTATION OF THE TIMING SERVICE

This section describes the architecture of a Tim-
ing Service (TS) that is capable of executing timing
specifications. Section IV-A describes the overall ar-
chitecture of the TS and Section IV-B outlines some
possibilities how such a service can be integrated with
existing management systems. Section IV-C describes
our current implementation of the Timing Service for
the Java platform.

A. Architecture

The architecture of the Timing Service is depicted
in Figure 6. All subsystems of the service are built on
top of the Runtime layer. The runtime layer provides
an entry point to start, initialize, run, and shutdown the

Repository

Action
Handler

Scheduler

Query API

Runtime

Timing Specificaton

Resource
Table

Timing
Constraints

Fig. 6. Architecture of the Timing Service

service. On startup, the runtime subsystem accesses a
Repository that stores the timing specification and
creates an initial runtime-representation of this speci-
fication. During the service is in use, the runtime layer
monitors internal changes of all objects and propagates
them into the repository so that they become persis-
tent.

The runtime-representations of the timing specifica-
tion elements are located in the Timing Specification
component. This component consists of a Resource
Table subsystem, that manages all resources together
with their events, as well as the Timing Constraints
subsystem that contains all created timing constraints,
namely the sequences, constraints, and applied timing
patterns. Both subsystems allow creating, retrieving,
updating, and deleting elements and assure the cor-
rectness of the overall model. A Query API provides
access to the timing specification from outside the TS.
Such a query API may be provided by the repository
directly (e.g., SQL when a relational database is
used, or RDQL when the data is stored in an RDF
framework); other options are to implement the API
as remote objects of the runtime timing specification
objects (e.g., Java RMI objects) or by developing a
dedicated Timing Service query protocol (TSQP).

The Timing Service includes a Scheduler that
watches the event times and schedules occurring and
upcoming events. It also provides a mechanism to
plug-in different types of clocks that translate the
world-time scalar into some clock-dependent scalar
value. The scheduler offers a notification mechanism
when any clock strikes a certain time. Whenever a time
is struck, the scheduler searches for the affected event
objects and notifies them. This notification will then
cause the Action Handler component to trigger ac-
tions for adapting its environment such as an external
PBM system.

Action handlers allow the Timing Service to actively
communicate with its environment. For example, an
action handler is notified that a certain interval has

Policy
Enforcement

Point

Policy Decision
Point

Policy
Repository LDAP

Policy Proto-
col (COPS)

Timing Service

(SQL,
RMI)LDAP

Fig. 7. Integration of the Timing Service with a Policy-Based
Management System

become active (e.g., a policy should be activated).
The handler then may connect to a Policy Decision
Point and inform it about the changes. Through intro-
ducing an active component (the action handlers) to
the Timing Service, not only outsourcing of timing
information (i.e., a passive, queryable information-
base) but also provisioning scenarios (active delivery
of timing information) are supported.

B. Integration with Role-based Management Systems

Figure 7 illustrates how the TS can be integrated
into a role-based management system. Following the
reference model described in RFC 3198, a Policy-
Based management system comprises the following
modules:

• A Policy Repository. “A specific data store that
holds policy rules, their conditions and actions,
and related policy data. A database or directory
would be an example of such a store.” [15]

• A Policy Decision Point (PDP). Often called
Policy Server. The PDP makes decisions for itself
or for other network elements that request such a
decision.

• A Policy Enforcement Point (PEP). A PEP
is any logical entity that enforces a policy by
applying the policy rules.

The integration of the Timing Service can be real-
ized in several ways, which differ in how an existing
management system is affected. In the simplest case,
the Timing Service can be integrated without affecting
the management system at all. In this scenario, the
Timing Service would be equipped with action han-
dlers that access the Policy Repository and directly
change the time conditions of the affected policies.

While integrating the Timing Service by directly
editing policies in the Policy Repository is feasible it
is still a questionable approach because the Timing
Service overwrites manual changes of the policies’
time conditions. A better integration could be achieved
when the action handlers can access the Policy Deci-
sion Points by some defined protocol or API. Then,

action handlers could trigger events in the PDP which
cause the PDP to recalculate its decision.

The tightest integration requires an adaption of the
Policy Decision Point to make it aware of the Timing
Service. In such cases, the PDP actively queries the
TS and access the specification. While some current
implementations may already offer mechanisms to
plug in such extensions as the Timing Service (e.g.,
programmable filters that can query the timing com-
ponent), other PDPs would need a change in source
code.

C. Current Implementation

The current implementation of the TS is written in
Java 1.4. Several interfaces and their concrete imple-
mentations realize the model described in Section III.

Each model class implements the observer pattern
by providing a listener mechanism that can be used to
get notified whenever the internal state of the object
changes. In addition to the listener mechanism, the
Event and Interval classes offer the possibility to add
so-called VetoableChangeListeners. In contrast to
common listeners, which are notified after the inter-
nal state has changed, VetoableChangeListeners are
notified before such a change occurs. By throwing an
exception, each of these vetoable change listeners has
the possibility to prevent a value to be changed. This
mechanism is used, for example, by intervals, which
register themselves as VetoableChangeListeners at
their start and end events to prevent inconsistent
changes such as changing the time of the end event to
a time before the start event time.

The Scheduler component is implemented as a
thread that monitors the current system time and
manages the clock implementations. Events register
their associated times with the scheduler. Whenever
a time is triggered, the scheduler informs the events.
This notification may then cause action handlers that
are associated with the event to execute. A scalar time
is triggered when its associated clock switches to the
scalar value. For the other time objects — dependent
and indefinite times —, the scheduler keeps track of
their state and triggers them as needed to assure the
correct execution of the timing specification.

The repository of the timing specification is imple-
mented on top of the Jena RDF framework [3] that is
loaded by the Runtime class (the main class that is
instantiated when the Timing Service is started). Since
the Runtime class registers itself with every object in
the specification, it can update the repository whenever
changes occur; equally, it propagates changes in the
repository to the specification objects.

In the current implementation, only relatively sim-
ple action handlers are implemented, mainly for test-
ing purposes. These action handlers only perform local

actions, such as making output on the terminal or
opening and closing windows (as representatives for
resources such as applications) when certain intervals
start and end. Even though the timing component
has not yet been tested with a running Policy-Based
management system, the timing mechanism works
and is independent from the concrete implementation
of the action handlers. Therefore, realizing one of
the integration scenarios described in Section IV-B
is mainly a matter of implementing the appropriate
action handlers.

V. CONCLUDING REMARKS

This paper presents a time model that can be used
for specifying timing constraints between resources.
Specifications can be executed on a Timing Service
for which we propose a model together with an archi-
tecture. Such a service can be integrated with existing
PBM systems. The Timing Service watches the model
and assures its validity. During execution the Tim-
ing Service monitors the environment for triggering
events. Such events usually denote the start and/or the
end of certain time intervals. Action handlers translate
changes in the internal state of the model into changes
of the state of a Policy Repository or even the Policy
Decision Point directly.

An interesting application area for this architec-
ture is the management of policy changes concern-
ing authentication, authorization, and accounting of
distributed resources in peer-to-peer networks, for
example, ‘granting access to a resource during a
session’ or ‘publishing the document while the project
is running’.

Since in peer-to-peer networks no central authority
exists, and users are more responsible for their re-
sources — compared to users in centrally managed
networks — it is difficult to offer a comprehensive
administration service in such environments. There-
fore, users become local administrators of their own
resources. Such a setup requires powerful but yet
easy to understand management tools. Policy-Based
management together with high-level Timing Services
are promising tools to realize such distributed admin-
istration.

REFERENCES

[1] E. Bertino, P.A. Bonatti, and E. Ferrari. TRBAC: A temporal
role-based access control model. ACM Transactions on
Information and System Security, 4(3), pages 191?233, 2001.

[2] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-Based
Access Control. Artech House Publishers, 2003.

[3] Jena ? A Semantic Web Framework for Java. available from
http://jena.sourceforge.net/.

[4] S. Jha and M. Hassan. Java implementation of Policy-Based
bandwidth management International Journal of Network
Management, Vol. 13, pages 249?258, 2003.

[5] A. Kern, M. Kuhlmann, R. Kuropka, and A. Ruthert. A meta
model for authorisations in application security systems and
their integration into RBAC administration. In Proceedings
of the 9th ACM symposium on Access control models and
technologies, ACM Press, pages 87?96, 2004.

[6] P. King, P. Schmitz, and S. Thompson. Behavioral Reactivity
and Real Time Programming in XML: Functional Program-
ming meets SMIL animation ACM Symposium on Document
Engineering, pages 57-66, 2004.

[7] K.L.E. Law and A. Saxena. Scalable design of a Policy-
Based management system and its performance. IEEE
Communications Magazine, Vol. 41, no. 6, pages 72-79, 2003.

[8] D. Lewis, K. Feeney, and V. Wade. Policy Based Management
for Internet Communities. In Proceedings of IEEE 5th
International Workshop on Policies for Distributed Systems
and Networks (Policy 2004), IBM Thomas J Watson Research
Center, New York, USA, pages 23-34, 2004.

[9] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. Policy
Core Information Model. IETF, RFC 3060, 2001. available
from http://www.ietf.org/rfc/rfc3060.txt?number=3060.

[10] B. Moore, Editor. Policy Core Information Model Exten-
sions. (PCIM). IETF, RFC 3460, 2003. available from
http://www.ietf.org/rfc/rfc3460.txt?number=3460.

[11] R. Prakash and M. Singhal Dependency sequences and
hierarchical clocks: efficient alternatives to vector clocks for
mobile computing systems Wireless Networks archive, Vol.
3, no. 5, pages: 349 - 360, 1997

[12] T. Pyron. Special Edition Using Microsoft Office Project
2003. Que, Feb. 2004

[13] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C.
E. Youman. Role-based access control models. IEEE
Computer, 29(2), pages 38?47, 1996.

[14] T. Wahl and K. Rothermel. Representing time in multimedia
systems. In IEEE 1st. International Conference on Multi-
media Computing and Systems, pages 538-543, 1994.

[15] A. Westerinen, J. Schnizlein, J. Strassner, et al. Terminology
for Policy-Based Management. IETF, RFC 3198, 2001. avail-
able from http://www.ietf.org/rfc/rfc3198.txt?number=3198.

[16] M. Wright. Using Policies for Effective Network Manage-
ment. International Journal of Network Management, Vol.
9, pages 118-125, 1999

[17] S. Wright, P. Lapiotis, and R. Chadha. Policy-Based Net-
working. IEEE Network, Vol. 16, no. 2, pages 8-9, 2002.

