
Technische Universität
München

Fakultät für Informatik

d d d d

dd
d dd

d
dd
d

dd
d

d d dd

Lotus Notes/Domino

Unified Modeling Process

- Specification -

June 2004

Version 0.9

Christoph Angerer
angerer@in.tum.de

Technische Universität München · Fakultät für Informatik · Lehrstuhl für
angewandte Softwaretechnik

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS
PROVIDED ”AS IS” AND MAY CONTAIN ERRORS OR MISPRINTS. THE
AUTHORS OR PUBLISHERS MAKE NO WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IM-
PLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS
FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE AU-
THORS OR PUBLISHERS BE LIABLE FOR ERRORS CONTAINED HEREIN
OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REV-
ENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY
IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed
using this specification is borne by you. This disclaimer of warranty consti-
tutes an essential part of the license granted to you to use this specification.

Contents

1 Motivation 5

1.1 Problem Statement . 5

1.2 Scenario . 6

2 Approach and Structure 8

2.1 Extending UML . 8

2.2 Design Goals . 9

2.3 Structure of the Specification 10

3 Lotus Notes Architectural Model 12

3.1 Basic Architecture . 13

3.2 Lotus Notes Design Documents 13

4 The NoDUMP Profile 16

4.1 Profile Specification Overview 16

4.2 Subsystem Decomposition 17

4.3 Component Specifications 18

4.3.1 Foundation Component 18

4.3.2 Database Component 22

4.3.3 Application Component 27

4.3.4 Presentation Component 33

4.3.5 Security Component 40

4.3.6 Topology Component 45

5 Translation of NoDUMP Models 49

6 NoDUMP Development Process 52

6.1 Use Case Model . 52

6.2 NoDUMP in the Project Lifecycle 55

7 Future Work 57

Appendices 58

A List of Figures 58

B References 59

4

1 Motivation

“Lotus Domino provides a multiplatform foundation for collaboration and
e-business, driving solutions from corporate messaging to Web based trans-
actions - and everything in between.” (http://www.lotus.com/domino)

Since its introduction to the market in 1989 the fundamental document-
based object model of Lotus Notes/Domino has been retained mostly un-
changed. While inveterate Notes developers praise this document-centric
view as the perfect way for building groupware applications, software en-
gineers who are not used to it flinch from using Notes because of the same
reason. Object-oriented software engineering as a way of conquering com-
plex and changing systems fails when it comes to Notes.

Currently, no sufficient and standardized methodology for developing Notes
applications exists, even though it is often requested in Notes related news-
groups. Some developers try to use entity relationship diagrams or UML
(Unified Modeling Language) to do some analysis and to define the data
model for their applications. But none of these methods are capable of
describing entire Notes applications.

Because of the lack of a sufficient modeling technique, the development
of Notes applications is still reserved to experts. This causes a blurring
of common developer roles where analysts and architects design a system
while programmers and designers build the application and its user inter-
face. During all stages of a development process, real Notes experts have
to be involved.

1.1 Problem Statement

In contrast to object-oriented software design patterns, within Notes, the
data schema, the user interface, and parts of the business logic are all in-
tended to be packed together into single objects, called “Documents”. The
resultant huge complexity for stand-alone Notes applications becomes even
worse when Notes is to be integrated into larger software systems. The ab-
sence of a common platform for communication between Notes experts and
the other developers affects the whole development process, from require-
ments elicitation through implementation up to documentation.

The goal of this paper is to develop a UML Profile (an extension to the UML)

5

which is capable of describing Notes applications and which forms the basis
for the integration of Notes development with state-of-the-art UML based
development processes, like for example the Rational Unified Process. This
extension should also be usable and understandable by developers who
do not know Lotus Notes/Domino in detail. Additionally, translation rules
will be elaborated which can be used in the future to develop tools which
automate the generation of Notes databases from an abstract model.

1.2 Scenario

Actors

Actor Description
BioNews Exchange Inc. Company which organizes conferences, customer
SoftApps Inc. Small company specialized on web applications
Susan Analyst at SoftApps Inc., Notes rookie
Toby K. Notes expert, Lotus Certified Developer

BioNews Exchange Inc. is a company which organizes conferences in the
field of gene manipulated food. Because the number of participants in-
creased steadily over the last years, BioNews Exchange Inc. wants to im-
prove the whole participant management. Therefore SoftApps Inc. gets an
order to develop a webbased software system for this task.

At a first step, Susan takes through an as-is analysis of how participants
are managed within BioNews Inc. today, including registration of par-
ticipants to a conference, billing of visited conferences, booking of hotel
rooms, sending news to registered people and much more. Based on this
information, Susan and her team write an analysis document containing
the problem statement, the requirements, use cases and the application
domain model.

Based on the application domain model, SoftApps Inc. decides to realize
the system using Lotus Notes/Domino. The rationale behind this decision
is not so much the broad functionality of Notes, which could be used, but
more the structure of the application domain. It turns out, that the whole
model is ruled by inheritance relationships which are more difficult to re-
alize using a relational database management system than using Notes.

Toby, as the Notes expert of SoftApps Inc., takes the UML application do-
main model as the starting point to develop the system design. In a first

6

step, he refines and annotates the model conforming to the NoDUMP UML
Profile and uses the Model-View-Controller paradigm to design the user in-
terface and functional elements. The automated generation transforms the
model into a partly-functional Notes database skeleton at every time.

During the whole development process, Toby as the Notes expert and Su-
san as the application domain expert, who does not know Notes in detail,
can talk about the solution on a strictly UML basis. The generated proto-
types are used to validate the system under development referring to the
Requirements Analysis Document and BioNews Exchange Inc. officials.

After the successful client acceptance test, the whole system is handed over
to BioNews Exchange Inc. Together with the binaries, a complete documen-
tation of the developed system is delivered. This documentation includes
the annotated UML diagrams which describe all aspects of the Notes solu-
tion, supporting future changes and maintenance.

7

2 Approach and Structure

2.1 Extending UML

“Currently, there is no normative definition of a UML profile. However, the
Business Object Initiative RFPs elucidated the following working definition
of a UML profile.

A UML profile is a specification that does one or more of the following:

• Identifies a subset of the UML metamodel (which may be the entire
UML metamodel).

• Specifies well-formedness rules beyond those specified by the identi-
fied subset of the UML metamodel. Well-formedness rule is a term
used in the normative UML metamodel specification (ad/99-06-08)
to describe a set of constraints written in natural language or UMLs
Object Constraint Language (OCL) that contributes to the definition
of a metamodel element.

• Specifies standard elements beyond those specified by the identified
subset of the UML metamodel. Standard element is a term used in
the UML metamodel specification to describe a standard instance of
a UML stereotype, tagged value, or constraint.

• Specifies semantics, expressed in natural language, beyond those spec-
ified by the identified subset of the UML metamodel.

• Specifies common model elements; that is, instances of UML con-
structs expressed in terms of the profile.”

(from [CORBA UML Profile])

UML provides a “lightweight” extension mechanism which is supported by
some UML tools. UML can be extended through:

Stereotypes The stereotype concept provides a way of classifying (mark-
ing) elements so that they behave in some respects as if they were
instances of new “virtual” metamodel constructs. With a “stereotype”
an existing UML model element can be subclassed.

8

Tagged values Tagged values are values which can be added to UML di-
agrams for modeling detailed information. Tagged values can be
bound to a stereotype or be general. A tagged value is written as
¿tagnameÀ .

Constraints Constraints can be added to stereotype definitions. Constraints
define the context in which the “new” (stereotyped) UML Model el-
ement can be used. For example, a constraint can tell that a stereo-
type ¿usesÀwhich extends the UML element “Association” must al-
ways have a ¿personÀ(which extends “Class”) on its association start.
While a standard association can be added between any classes, this is
not true for an ¿usesÀ-association, because only a ¿personÀcan use
something (in this example!). Constraints may be specified in OCL
(object constraints language) or in natural language.

The definition of a stereotype uses the same notation as a class but it is
stereotyped ¿stereotypeÀ. The first letter of an applied stereotype should
not be capitalized. For example: a stereotype “Database” is notated as
¿databaseÀ.

2.2 Design Goals

The NoDUMP Profile extension to the UML has been designed with the
following design principles in mind:

Readability of Diagrams While it is possible to include loads of Notes-
related information into the diagrams, this is not strictly necessary.
Detailed information can be left out without changing the meaning
of the models. Together with context-related default stereotypes the
readability of the resulting diagrams can be maximized.

Components for single Tasks Each component of NoDUMP can be used
to design and model different aspects of an application, like for ex-
ample data model, business logic or user interface. This allows to
define developer roles and responsibilities and supports a clear struc-
ture within Notes Applications.

System Boundary In order to gain a well-defined interface between Notes
databases and external applications NoDUMP cannot be mixed with

9

standard UML elements or other UML profiles within one package.
In case non-stereotyped UML elements are used within a NoDUMP
model, default NoDUMP stereotypes are assumed.

2.3 Structure of the Specification

After an introduction to the conceptual model of Lotus Notes in section 3,
the NoDUMP Profile is specified in section 4. The specification consists of
the main parts as follows:

Profile Specification Overview (section 4.1): Provides UML related con-
text information of the NoDUMP Profile and specifies the applied
naming conventions.

Subsystem Decomposition (section 4.2): Gives an overview over the whole
profile which is logically divided into several components.

Component Specifications (sections 4.3.1 to 4.3.6): Each component de-
scribed in the subsystem decomposition section (section 4.2) is spec-
ified in a single subsection.

Each of these component subsections adheres to the following structure:

Introduction: Each component is introduced giving a short description.

Diagram: A UML diagram visualizes the abstract syntax of each compo-
nent (i.e. the classes and their relationships) together with some of
the constraints (multiplicity and types). These diagrams use stereo-
types defined by [UML2Infra] for extending UML, like ¿metaclassÀand
¿stereotypeÀ. According to [UML2Infra], the generalization associa-
tion between a ¿metaclassÀand a ¿stereotypeÀis notated as a gener-
alization arrow with a filled rectangle at the association end.

Stereotypes: All stereotypes are listed in alphabetical order. A short de-
scription for each stereotype explains its semantic and additional con-
straints.

Data Types: All data types which are defined in the component are ex-
plained in a single section.

10

Examples: One or more graphical examples show possible usages of the
component.

Section 5 describes the most important rules for translating NoDUMP com-
pliant models into Notes database applications. The rules are given in a
graphical notation using the profile as well as instances of Notes objects
introduced in section 3.

The integration of NoDUMP into state-of-the-art UML-based development
processes is described in section 6. As a representative process the Rational
Unified Process (RUP) is used.

11

Notes Server

-port

Server Task

HTTP Task

SMTP Task

Browser

Mail Client

-name
-isTemplate : boolean

Database

Access Control List

System Database

names.nsf

-uid

Document

-name

Design Document

-name
-values

Item

1 *

1

*

1

1

1

* 1 *

...

...

Figure 1: Lotus Notes Architectural Model

3 Lotus Notes Architectural Model

This chapter gives an overview over the most important entities within
Notes. Figure 1 shows the basic architectural model of Notes and figure
2 shows a conceptual model of the design documents provided by Notes.
Both figures will be explained in the following two sections.

12

3.1 Basic Architecture

The Notes Server is the central application which manages all databases
and server tasks.

For communication with other software systems, several Server Tasks can
be started. Each server task realizes a certain protocol, e.g., for communi-
cation over HTTP, SMTP or LDAP. A task usually accesses the databases on
the server, processes the request and generates an appropriate response for
the client.

The principle building block of a Notes application is the Database. But a
Database does not only contain data, as the name may imply, but also holds
the business logic and design elements. Therefore, a Database is usually an
entire application. The access rights to a Database are defined by an Access
Control List.

The Notes server itself heavily uses databases for realizing its own man-
agement tasks. These System Databases are used for server configuration,
user management, error logging, mailing purposes and so on.

The structure in which a Database stores its data is called Document. A
unique id is automatically assigned to a Document on creation. In contrast
to “record sets” used by relational database management systems, a Doc-
ument does not define any schema for its data. Instead, a Document uses
name-values pairs which can be inserted dynamically.

3.2 Lotus Notes Design Documents

Design Documents hold the data schemas, business logic, and user in-
terface (the “source code” of a Notes application). As shown in figure 1,
Design Documents are similar to any other Document storing application
data. Therefore, all mechanisms like replication or versioning provided by
the Notes Server can be used for the source code itself. This enables the de-
velopers to distribute application changes over several database instances
and even Notes Servers.

Figure 2 shows the most important Design Document types provided by
Notes as well as their conceptual dependencies. Overall, Notes provides 12
different types of Design Documents for different purposes.

13

Page

-entries

Outline

FormSharedField

-code

SharedAction

-code

ScriptLibrary

-name

Design Document

-code

Agent

Subform

-columns
-selectionFormula
-formFormula

View

-formula

ComputedText

-content
-acl

Section

-code

Action

-rows
-columns

Table

-buttons

Navigator

EmbeddbleDesignDocument

-name

DesignElement

1 *
1

*

ContentDesignDocument

1

*

1

-type
-translation formula
-validation formula

Field

Figure 2: Lotus Notes Design Documents Model

DesignElements can be used within ContentDesignDocuments for layout
and functional purposes, but a DesignElement is no DesignDocument by
itself and can therefore not be replicated. Examples for DesignElements
are Tables for layouting or Actions, similar to HTML-links or buttons, for
executing server side code.

EmbeddableDesignDocuments are concrete DesignDocuments but they
can only be displayed to the user by embedding them into a Content-
DesingDocument. Navigators and Outlines are used to realize different
types of user menus. SharedActions define a piece of code which is exe-
cuted when a button or link is pressed. Views are used to select a subset
of all existing documents of a database and present them in a tabular style.
Which documents should be included within a view is defined by a “selec-
tion formula”, similar to an SQL statement. If a View should be directly dis-
played to a user, either a Notes default form or a customized view template
form is used, so a View is alway embedded into a Form when presented.

The user interface is realized by ContentDesignDocuments . They can
include text, pictures, DesignElements as well as EmbeddedDesignDoc-
uments to present content. Pages are used for static content, similar to

14

HTML pages. Forms create or display dynamic content stored in the Doc-
uments of a Database. Fields or SharedFields access the corresponding
values of the Document for presentation or editing. Fields and values are
associated by name equality. Subforms are very similar to Forms but they
can only occur within a surrounding Form.

Most of the business logic of Notes applications is realized within Agents.
An Agent is a piece of code which can be executed on certain events. These
events may be triggered by the user (e.g., by pressing a button) or by sys-
tem events (e.g., on schedule). Code which is used by multiple Agents or
Actions can be separated into ScriptLibraries.

15

4 The NoDUMP Profile

4.1 Profile Specification Overview

4.1.0.1 Naming Conventions

• A stereotype has a unique name within the package. This means that
each word coinciding with the name of some stereotype refers to that
stereotype. Each component section describes its “view” on a stereo-
type and therefore adds additional information to the stereotype. The
sum of all those information describes the whole stereotype, its tag
definitions and constraints.

• To avoid naming conflicts with other profiles, all stereotypes which
have a Core::Basic::Class type (e.g., Class, Interface, Node etc.) as a
base class will have the prefix“Notes”.

• All other stereotypes will have “Notes”as a prefix, if possible. If the
prefix worses readability it may be omitted (e.g., A-¿runsÀ-B in favor
of A-¿notesRuns À-B)

• For names that consist of appendeded noun/adjectives, initial embed-
ded capitals are used (e.g., “notesDatabase”)

• Boolean attribute names always start with “is” (e.g., isTemplate)

• Enumeration types always end with “Kind” (e.g., ItemKind)

• Abstract stereotypes which extend the abstract UML class “Element”
will have the postfix “Entity” to indicate that this stereotype may be
a generalization for stereotypes which additionally extend different
concrete UML classes. For example the “NotesHideableEntity” is a
generalization of “NotesHideableProperty” and “NotesHideableOper-
ation” which also extend “Property” respectively “Operation” from
UML.

4.1.0.2 Reference to Metamodel
The NoDUMPProfile extends the UML (Unified Modeling Language) of the
OMG (Object Management Group), Version 2.0 as described in [UML2Super]
and [UML2Infra].

16

4.1.0.3 Extended Packages
The NoDUMPProfile extends the following standard UML packages:

• Core

• Model Management

4.1.0.4 Applied Subset
The following concrete metaclasses, and implicitly all super-metaclasses of
these metaclasses, are used:

• Artifact

• Association

• Class

• Component

• Dependency

• Element

• Generalization

• Interface

• Node

• Operation

• Package

• Property

4.2 Subsystem Decomposition

The Standard elements are defined within a single package called NoDUMP-
Profile. The specification of the NoDUMPProfile package defines stereo-
types to model Notes related applications. Because of its size, the whole

17

Foundation

Database Application Presentation Security Topology

Figure 3: The components of the NoDUMP Profile

profile is divided into single components, each to model different aspects
of an application.

Figure 3 shows all components of the NoDUMP Profile.

Foundation: Abstract stereotypes used by other components.

Database: Stereotypes used to model the database functionalities of Notes.

Application: Stereotypes used to model business logic realized with Notes.

Presentation: Stereotypes used to model (web) user interfaces driven by
Notes.

Security: Stereotypes used to model security aspects of Notes.

Topology: Stereotypes used to model topology issues (like deployment of
databases over several servers) of Notes.

4.3 Component Specifications

The following section describes all stereotypes defined by the components
shown in figure 3.

4.3.1 Foundation Component

The Foundation component includes abstract stereotypes which are spe-
cialized or used by the other components. The intention is to simplify the

18

dependencies between all components to get a clear architecture. All other
components extend one or more stereotypes of the Foundation component.

The Foundation stereotypes diagram is shown in figure 4.

4.3.1.1 Stereotypes

4.3.1.1.1 NotesDesignDocument
This stereotype is a superclass for all elements which will be directly real-
ized as design documents in notes. The isDesignRefreshed property spec-
ifies whether the NotesDesignDocument inherits its content from another
database or not. The default value is “false”. The aliases property is used to
define alternative names for the The NotesDesignDocument. The default
value is null. The template property specifies a design document from an-
other database which may act as a template for this design document. The
default value is null.

4.3.1.1.2 NotesHideableEntity
This stereotype is a superclass for all elements which can be hidden dur-
ing presentation. The hideWhen property specifies a boolean formula. If
the formula is evaluated to true, the NotesHideableEntity will not be dis-
played during presentation. The formula may be given in precise natural
language, as a boolean expression or as a Notes Formula Language expres-
sion. The default value is “false”.

4.3.1.1.3 NotesHideableAssociation
This stereotype is a superclass for all associations which can be hidden dur-
ing presentation. If an association is hidden for display the model behaves
exactly as if the association does not exist.

4.3.1.1.4 NotesHideableOperation
This stereotype is a superclass for all operations which can be hidden dur-
ing presentation. While an operation is hidden it cannot be called by the
user.

19

-aliases
-isDesignRefreshed
-template

«stereotype»
NoDUMPProfile:: NotesDesignDocument

«metaclass»
UML::Class

-hideWhen

«stereotype»
NoDUMPProfile:: NotesHideableEntity

«metaclass»
UML::Element

«stereotype»
NoDUMPProfile:: NotesVisibleContent

«stereotype»
NoDUMPProfile:: NotesUsableEntity

-parts

«stereotype»
NoDUMPProfile:: Uses

«metaclass»
UML::Dependency

«stereotype»
NoDUMPProfile:: NotesProgrammedEntity

«stereotype»
NoDUMPProfile:: NotesSecureableEntity

«stereotype»
NoDUMPProfile:: NotesHideableAssociation

«stereotype»
NoDUMPProfile:: NotesHideableOperation

«stereotype»
NoDUMPProfile:: NotesHideableProperty

«metaclass»
UML::Association

«metaclass»
UML::Operation

«metaclass»
UML::Property

«stereotype»
NoDUMPProfile:: NotesPackage

«metaclass»
UML::Package

Figure 4: Foundation Component Stereotypes

20

4.3.1.1.5 NotesHideableProperty
This stereotype is a superclass for all properties which can be hidden during
presentation. Hidden properties will not be displayed to the user but the
values can still be accessed within code.

4.3.1.1.6 NotesPackage
A NotesPackage is the default stereotype for all packages directly or indi-
rectly included in a NotesDatabase package. All elements of a NotesPack-
age must use a sterotype defined by NoDUMP . If no stereotype is given, a
suitable default stereotype is assumed.

4.3.1.1.7 NotesProgrammedEntity
Entities which can contain executable code are of type NotesProgramme-
dEntity.

4.3.1.1.8 NotesSecureableEntity
All entities which can be secured by a NotesSecurityRole specialize NotesSe-
cureableEntity. In order to access a NotesSecureableEntity the user must
be allowed to access the current entity as well as all parent NotesSecure-
ableEntities. For example: for accessing a Notes form a user must have
access to the Notes database which defines the form as well.

4.3.1.1.9 NotesUsableEntity
A NotesUsableEntity is an element which can be the target of a Uses de-
pendency.

4.3.1.1.10 NotesVisibleContent
This stereotype is a superclass for all stereotypes which hold visible content.
A NotesVisibleContent object (e.g., a NotesPage) can include other visible
components (e.g., a NotesView).

4.3.1.1.11 Uses
The Uses dependency is used to indicate that an element requires some
detailed information about another element (for example within the code
or properties). A Uses dependency must point to a NotesUseableEntity

21

while every other element can be the source of a Uses dependency. The
parts property is a list of strings where details about all used parts can be
listed (e.g., which properties or operations are used). The default value is
“*” which means that all parts are used.

4.3.1.2 Data Types
No data types are defined in the foundation component.

4.3.1.3 Example
For the Foundation component no graphical example can be given.

4.3.2 Database Component

The Database component specifies stereotypes for defining single data types,
relationships between data types, and access paths to data within Notes
database application. When using an MVC architecture stereotypes defined
by the Database component are used to model the “Model” elements.

The Database stereotypes diagram is shown in figure 5.

4.3.2.1 Stereotypes

4.3.2.1.1 Category
A category is used in NotesDocumentCollections to indicate that a column
of the collection groups equal values in categories.

4.3.2.1.2 Collects
This stereotype tells, which documents will be collected within a document
collection. The association source must be a NotesDocumentCollection
and the target a NotesDocument. The selection property is a boolean for-
mula which is applied to all existing Notes documents within a database.
If the selection is evaluated to true for a document it becomes part of
the NotesDocumentCollection. The default value is “true” which means
all documents are collected. The formula may be given in precise natural

22

-sorting : SortingKind
-formula

«stereotype»
NoDUMPProfile:: Column

«metaclass»
UML::Property

-selection

«stereotype»
NoDUMPProfile:: Collects

«metaclass»
UML::Association

-formula

«stereotype»
NoDUMPProfile:: Computed

«metaclass»
UML::Dependency

«stereotype»
NoDUMPProfile:: Creates

«stereotype»
NoDUMPProfile:: Fixed

-type : ItemKind
-defaultValue
-validation

«stereotype»
NoDUMPProfile:: Item

-recipient

«stereotype»
NoDUMPProfile:: Mails

-aliases
-isDesignRefreshed
-template

«stereotype»
NoDUMPProfile:: NotesDesignDocument

-name
-type : DatabaseKind

«stereotype»
NoDUMPProfile:: NotesDatabase

«metaclass»
UML::Class

-key

«stereotype»
NoDUMPProfile:: NotesDocument

-isUserSettings

«stereotype»
NoDUMPProfile:: NotesSettings

+Template
+Database
+Mailbox

«enumeration»
NoDUMPProfile:: DatabaseKind

+Single
+MultipleValues
+Enumeration
+List
+RichText
+Calendar

«enumeration»
NoDUMPProfile:: ItemKind

«stereotype»
NoDUMPProfile:: NotesSecureableEntity

«stereotype»
NoDUMPProfile:: NotesUsableEntity

-connectionInfo

«stereotype»
NoDUMPProfile:: NotesDataConnection

«stereotype»
NoDUMPProfile:: NotesDocumentCollection

+None
+Ascending
+Descending

«enumeration»
NoDUMPProfile:: SortingKind

«stereotype»
NoDUMPProfile:: Category

«stereotype»
NoDUMPProfile:: NotesPackage

Figure 5: Database Component Stereotypes
23

language, as a boolean expression or as a Notes Formula Language expres-
sion. Collects is the default stereotype for associations between NotesDoc-
umentCollections and NotesDocuments.

4.3.2.1.3 Column
A Column stereotyped property can be used in NotesDocumentCollec-
tions. The sorting property defines the order in which collected Notes-
Documents are sorted. The default value is “None”. The formula property
specifies a formula that is used to compute the row-values for the column.
The formula is executed for each document. The formula may be given
in precise natural language or as a Notes Formula Language expression.
The default is “name of column” which means the value of the document
items which are associated with the column property name. Column is the
default stereotype for properties of NotesDocumentCollections.

4.3.2.1.4 Computed
This stereotype indicates that the value of a NotesDocument item is auto-
matically computed every time the document is edited. The formula prop-
erty specifies a formula that is used to compute the value of the item. The
formula may be given in precise natural language or as a Notes Formula
Language expression. The default is null.

4.3.2.1.5 Creates
The Creates dependency can be used to specify which elements create
NotesDocuments of a certain type. The dependency target must be a
NotesDocument

4.3.2.1.6 Fixed
Fixed properties of NotesDocuments are similar to Computed properties.
But for Fixed properties the formula will only be evaluated once on cre-
ation of a NotesDocument.

4.3.2.1.7 Item
Every value stored in a NotesDocument is associated with an Item name.
This stereotype defines details of a document item. The property type can

24

be used to define special Notes field types. The default value for this prop-
erty is “MultipleValues”. The property defaultValue specifies a formula that
is used to compute the initial value of an item on creation of a NotesDocu-
ment. The formula may be given in precise natural language or as a Notes
Formula Language expression. The default for this property is null. The
validationFormula property is a boolean formula which must evaluate to
“true” in order to save changes to a NotesDocument. The default value is
“true”. The formula may be given in precise natural language, as a boolean
expression or as a Notes Formula Language expression. Item is the default
stereotype for all properties of a NotesDocument.

4.3.2.1.8 Mails
The Mails dependency indicates that a document of a certain kind will be
mailed to a certain recipient. The recipient property specifies a formula
that is used to compute one or more e-mail addresses. The formula may be
given in precise natural language or as a Notes Formula Language expres-
sion. The default value for this property is null.

4.3.2.1.9 NotesDataConnection
A NotesDataConnection class is used to access other data sources, like re-
lational databases or SAP, within a Notes application. The connectionInfo
property can be used to specify further details for a connection like the
server name, port, and resource name.

4.3.2.1.10 NotesDatabase
A Database package owns all elements defining a Notes database appli-
cation. The name property can be used to specify the file name of the
database when it is deployed on the server. The default value is the name
of the package. The type property specifies the type of the Notes database.
The default value is “Template”.

4.3.2.1.11 NotesDocument
A NotesDocument defines possible structures of Notes document instances.
It is an abstract view on valid states of documents associated with a certain
document type. A NotesDocument must not have any operations. The key
property specifies an item which has and must have a unique value for all

25

document instances. NotesDocument is the default stereotype for classes
within NotesPackages.

4.3.2.1.12 NotesDocumentCollection
A NotesDocumentCollection collects instances of one or many document
types. Which concrete documents will be part of a NotesDocumentCollec-
tion is specified by the collect associations. A document instance can be
part of multiple NotesDocumentCollections.

4.3.2.1.13 NotesSettings
A NotesSettings object is a special kind of NotesDocument and will be
realized as a Notes “Database Profile Document”. There can only be one
instance of a NotesSettings document of one kind per database or per
database and user. A NotesSettings document can be compared to a “sin-
gleton” design pattern. The isUserSetting property specifies the context of
the settings. “True” means that there is one instance of the NotesSettings
per user and per database, “false” means that there is only on instance
within the whole database. The default value is “false”.

4.3.2.2 Data Types

4.3.2.2.1 DatabaseKind
Notes provides several types of databases. DatabaseKind is an enumera-
tion of these types. Template databases define design documents which
can be used within other Templates or which can be instantiated in con-
crete Database applications. A special type of database application is a
Mailbox which can directly receive emails.

4.3.2.2.2 ItemKind
Notes Fields are used to realize NoDUMP Items. Notes provides different
field types. The ItemKind is an enumeration of these types. SingleValue
and MultipleValues define the multiplicity of values for a item, Enumera-
tion and Selection define discrete values where one or more values can be
selected. RichText defines a special type of text which can be formatted.
Calendar is used for choosing dates.

26

-firstname
-lastname
-email

«notesDocument»
Person

-employeeID
-login
-password
-salary

«notesDocument»
Employee

-customerID
-email
-firstName
-lastName

«notesDocument»
Customer

-name
-email

«notesDocument»
Group

-members

*

-participates

*

«computed» -fullname

«notesDocument»
NamedEntry

{Key = fullName}
-departmentName

«notesDocument»
Department

-departmentAssignment

1 *

-number
-workplaces

«notesDocument»
Office

{Key = number}

-worker*

-office

1

-subDepartment

*

-parentDepartment0..1

-owner1

-offices*

«fixed» -date
-body

«notesDocument»
Letter

-recipient1

-correspondence*

«category» -departmentAssignment
-firstname
-lastname
-city

«notesDocumentCollection»
USCustomersByDepartmentCollection

*

*

«collects»

-administratorMail

«notesSettings»
AddressBookProfile
{isUserProfile = false}

{selection="country=='US'"}

Figure 6: Example using the Database Component

4.3.2.2.3 SortingKind
The SortingKind can be None, which means no special order, Ascending
or Descending.

4.3.2.3 Examples

Figure 6 shows an example diagram using the database component.

4.3.3 Application Component

The Application component defines stereotypes which are used to model
the business logic of Notes applications. The main objects for realizing
business logic within Notes are the NotesAgent for executable programs
and NotesLibraries for collecting reusable code. When using an MVC ar-
chitecture the stereotypes defined by the Application component are used

27

to model the ”Controller” elements.

The Application stereotypes diagram is shown in figure 7.

4.3.3.1 Stereotypes

4.3.3.1.1 NotesAgent
A NotesAgent defines code which is executed on certain events (e.g., a
form is saved, a button is clicked, or on schedule). The language property
can be used to specify the programming language. The default value is
”LotusScript”.

4.3.3.1.2 NotesClientSideObject
A NotesClientSideObject is an object written in a certain language which
accesses a Notes database remotely. Every external class which has de-
pendencies or associations to Notes related classes must be stereotyped
NotesClientSideObject. If no stereotype is given, NotesClientSideObject
is assumed. NotesClientSideObjects are the boundary objects which sepa-
rates Notes applications from Non-Notes applications. The language prop-
erty can be used to specify the programming language. The default value
is ”Java”.

4.3.3.1.3 NotesLibrary
A NotesLibrary includes properties, operations, and code written in a Server-
SideLanguage, which can be reused within NotesAgents or other Notes-
Libraries. The language property can be used to specify the programming
language. The default value is ”LotusScript”. If a NotesLibrary is used by
a NotesAgent the values of both language properties must be equal.

4.3.3.1.4 NotesTrigger
A trigger represents an event source which is usually part of the Notes
server. If the specified event occurs, all NotesAgent which are dependent
on the NotesTrigger via a runs dependency are executed. The triggerType
defines the type of event. The default value is ”Manually”, that is a user
triggers the event through a user menu. The triggerValue property can be

28

-language : ServerSideLanguageKind

«stereotype»
NoDUMPProfile:: NotesAgent

-aliases
-isDesignRefreshed
-template

«stereotype»
NoDUMPProfile:: NotesDesignDocument

«metaclass»
UML::Class

-language : ClientSideLanguageKind

«stereotype»
NoDUMPProfile:: NotesClientSideObject

-language : ServerSideLanguageKind

«stereotype»
NoDUMPProfile:: NotesLibrary

-triggerType : TriggerKind
-triggerValue

«stereotype»
NoDUMPProfile:: NotesTrigger

«metaclass»
UML::Association

-target : TargetKind

«stereotype»
NoDUMPProfile:: Processes

«metaclass»
UML::Dependency

«stereotype»
NoDUMPProfile:: Runs

+Java
+JavaScript
+C++

«enumeration»
NoDUMPProfile:: ClientSideLanguageKind

+Java
+LotusScript
+FormulaLanguage

«enumeration»
NoDUMPProfile:: ServerSideLanguageKind

+CurrentDocument
+AllDocuments
+ModifiedDocuments
+DeletedDocuments

«enumeration»
NoDUMPProfile:: TargetKind

+Manually
+BeforeMailArrives
+AfterMailArrived
+AfterModification
+MoreThanOnceADay
+Daily
+Weekly
+Monthly
+Never

«enumeration»
NoDUMPProfile:: TriggerKind

«stereotype»
NoDUMPProfile:: NotesUsableEntity

«stereotype»
NoDUMPProfile:: NotesProgrammedEntity

Figure 7: Application Component Stereotypes

29

used to specify further details on the event, for example day and time for
scheduled triggers. The default value is null.

4.3.3.1.5 Processes
The Processes stereotype defines the document types which are processed
by an NotesAgent. A Processes association implies a Uses dependency.
The association source must be a NotesAgent and the association target
must be a NotesDocument. The target property specifies the scope of
documents to be processed. The default value is “CurrentDocument”.

4.3.3.1.6 Runs
A Runs dependency defines the elements which execute a NotesAgent on a
certain event. Usually the dependency source is a NotesTrigger or Notes-
Form. The dependency target must be a NotesAgent.

4.3.3.2 Data Types

4.3.3.2.1 ClientSideLanguageKind
An enumeration of programming languages which can be used on the client
side for accessing a Notes server remotely.

4.3.3.2.2 ServerSideLanguageKind
An enumeration of programming languages which are supported by Notes.

4.3.3.2.3 TargetKind
An enumeration of different scopes of documents which will be processed
by a NotesAgent. The CurrentDocument is the document within the
Notes user context object, usually the document which is currently dis-
played to the user. The AllDocuments scope includes all existing and not
deleted documents within a Notes database. ModifiedDocuments are all
documents which have been changed since the last execution of a certain
NotesAgent. DeletedDocuments are documents which have been deleted.
When using the DeletedDocuments scope, the Notes database must be set
to “allow soft deletions”.

30

-customerID
-email
-firstName
-lastName

«notesDocument»
Customer

«fixed» -date
-body

«notesDocument»
Letter

-recipient1

-correspondence*

«notesAgent»
SendLetterAgent

«uses»

«mails»

«creates»

«runs»

{recipient="currentCustomer.email"}

{parts="email,
firstName,
lastName"}

* -currentCustomer*«processes»

{target="currentDocument"}

{<<fixed>>
date=@today}

<<Example: User clicks on a button
called "Notify customer">>

Figure 8: Example using the Application Component

4.3.3.2.4 TriggerKind
An enumeration of all system events provided by Notes.

Type Description
Never Trigger is turned off
Manually Triggered by user menu
BeforeMailArrives Triggered before a mail is stored
AfterMailArrived Triggered after a mail arrived
AfterModification Triggered when a document changes
Daily Triggered on schedule
Monthly Triggered on schedule
Weekly Triggered on schedule

4.3.3.3 Examples

Figure 8 shows a simple example diagram describing the application com-
ponent. A more complex example is shown in figure 9.

31

+init(){sequentiell}
-transferSalary(in recipient : Employee){sequentiell}
-transferTaxes(){sequentiell}
-printPayroll(){sequentiell}

-totalTaxes

«notesAgent»
TransferSalariesAgent

{language = "LotusScript"}

-employeeID
-login
-password
-salary

«notesDocument»
Employee

«notesTrigger»
MonthlyTrigger

{triggerType = "monthly",
triggerValue = "15th"}

«runs»

+newEmployee(in departmentName, in id, in firstname, in lastname){sequentiell}
+showEmployees(in departmentName){sequentiell}

«notesClientSideObject»
EmployeeHome

{language = "Java"}

«creates»

«category» -departmentAssignment
«computed» -overallSalaries
-firstName
-lastName
-employeeID

«notesDocumentCollection»
EmployeesCollection

* *

«collects»

+getDepartmentName()
+getEmployeeID()
+getFirstName()
+getLastName()
+setFirstName()
+setLastName()

«notesClientSideObject»
EmployeeStub

*

-data*

* *

System Boundary

+computeTax(in salary, in country){sequentiell}
+refreshTaxRates(){sequentiell}

«notesLibrary»
TaxUtils

{language = "LotusScript"}

«uses»

-taxRateUS
-taxRateEurope

«notesSettings»
TaxProfile

-taxSettings1

*

-allEmployees*

-employees

*

*

«processes»

{target="allDocuments"}

{parts="computeTax"}

{<<computed>>
overallSalaries="sum of all
past salaries since
entry date"}

Figure 9: Example using NotesClientSideObjects

32

4.3.4 Presentation Component

The Presentation component defines stereotypes which are used to model
visible elements of user interfaces. When using an MVC architecture the
stereotypes defined by the Presentation component are used to model the
“View” elements.

The Presentation stereotypes diagram is shown in figure 10.

4.3.4.1 Stereotypes

4.3.4.1.1 Action
An Action operation defines code which will be executed on the server side
when a user presses a control element. Control elements are, for example,
buttons or links on a webpage. An action is the default stereotype for
operations of NotesVisibleContent objects. The type property defines the
type of control element which should be used. The default value is “Link”.

4.3.4.1.2 ComputedField
A ComputedField stereotyped property of a NotesForm is used for display-
ing non-static values. The value of a ComputedField property cannot be
changed by the user but it may be accessed within code. The formula prop-
erty specifies a formula that is used to compute the value of the field. The
formula may be given in precise natural language or as a Notes Formula
Language expression. The default value is null.

4.3.4.1.3 Defines
A defines generalization is used between a NotesDocument and a Notes-
Form. A form which defines a NotesDocument can be used for creating
documents of this type. The defines generalization implies a displays de-
pendency.

4.3.4.1.4 Displays
A displays dependency indicates which NotesForms can be used for dis-
playing certain NotesDocuments.

33

-type : AnchorKind

«stereotype»
NoDUMPProfile:: Action

-hideWhen

«stereotype»
NoDUMPProfile:: NotesHideableEntity

-Formula

«stereotype»
NoDUMPProfile:: ComputedField

«metaclass»
UML::Generalization

«stereotype»
NoDUMPProfile:: Defines

«stereotype»
NoDUMPProfile:: Displays

«metaclass»
UML::Dependency

-type : ItemKind
-item
-defaultValue

«stereotype»
NoDUMPProfile:: Field

-selection
-parts

«stereotype»
NoDUMPProfile:: Includes

-target
-mode : ModeKind
-type : AnchorKind

«stereotype»
NoDUMPProfile:: Link

«stereotype»
NoDUMPProfile:: NotesVisibleContent

-type : FormKind

«stereotype»
NoDUMPProfile:: NotesForm

-type : NavigatorKind

«stereotype»
NoDUMPProfile:: NotesNavigator

-type : PageKind

«stereotype»
NoDUMPProfile:: NotesPage

«stereotype»
NoDUMPProfile:: NotesPresentation

«metaclass»
UML::Package

«stereotype»
NoDUMPProfile:: NotesView

-language : ClientSideLanguageKind
-type : AnchorKind

«stereotype»
NoDUMPProfile:: Script

-isExpandable
-icon
-isSortable
-formula
-caption

«stereotype»
NoDUMPProfile:: ViewCategory

+Link
+Button
+Picture
+Action

«enumeration»
NoDUMPProfile:: AnchorKind

+Subform
+Form
+ViewTemplate
+*

«enumeration»
NoDUMPProfile:: FormKind

+Edit
+View
+Preview

«enumeration»
NoDUMPProfile:: ModeKind

+Linklist
+Picture
+Outline
+Page

«enumeration»
NoDUMPProfile:: NavigatorKind

+Frameset
+Static
+AboutDatabaseDocument

«enumeration»
NoDUMPProfile:: PageKind

+Table
+Section
+TabbedPane

«enumeration»
NoDUMPProfile:: SectionKind

«stereotype»
NoDUMPProfile:: NotesHideableOperation

«stereotype»
NoDUMPProfile:: NotesHideableAssociation

«stereotype»
NoDUMPProfile:: NotesHideableProperty

-type : SectionKind

«stereotype»
NoDUMPProfile:: NotesSection

«stereotype»
NoDUMPProfile:: NotesDocumentCollection

«stereotype»
NoDUMPProfile:: SharedField

Figure 10: Presentation Component Stereotypes

34

4.3.4.1.5 Field
A Field is the visible equivalent to an Item with additional information
about presentation options. The type property defines the presentation
style and control element type. The default value is “Text”. The item prop-
erty can be used to map the Field to a document Item with a different
name. The default value is “name of the Field property” which means
that the property’s name is assumed as the Item’s name. The defaultValue
property specifies a formula that is used to compute the initial value of the
field. The formula may be given in precise natural language or as a Notes
Formula Language expression. The default is null. The Field stereotype is
the default stereotype for all properties of a NotesForm.

4.3.4.1.6 Includes
An Includes aggregation is used to model the content of NotesVisible-
Content objects. The aggregation source as well as the target must be a
NotesVisibleContent. If an Includes aggregation is hidden, the object at
the aggregation end will not be displayed.

4.3.4.1.7 Link
A Link association is used to model the navigation structure between Notes
VisibleContent elements. It can be compared to a hyperlink used in HTML
with different presentation options. A Link association may be directed or
bidirectional. The target property is used to specify the name of a Notes-
Section where the linked element should be displayed in, e.g., a frame
within a frameset. Additionally, reserved targets defined by HTML such as
“ top” or “ parent” can be used. The default value is “ self” which means
the linked element is presented within the same frame as the linking ele-
ment. The mode property can be used when the association end points to
a NotesForm. It specifies the mode in which the form should be opened.
The default value is “view”. The type property is used to specify the type
of control which should be used for presenting the link. The default value
is “Link” which means a standard HTML hyperlink should be used.

4.3.4.1.8 NotesForm
A NotesForm is used to display documents of certain types. If a NotesForm
inherits from another NotesForm, the layout, the fields, and the actions of
the parent NotesForm are inherited. The type property can be used to
specify how the NotesForm should be realized. The default value is “Auto”

35

which means that the type (a Notes form or a Notes subform) is chosen
depending on inheritance issues (see section 5).

4.3.4.1.9 NotesNavigator
A NotesNavigator represents a kind of menu bar which can be used to
navigate through the application. The type property defines the type of the
menu bar. The default value is “Outline”.

4.3.4.1.10 NotesPage
A NotesPage presents static content. “Static” means, that no information
stored in documents of the database can be included. The type property is
used to specify special types of pages. The default value is “Static”.

4.3.4.1.11 NotesSection
A NotesSection represents a rectangular area within a NotesVisibleCon-
tent object and may include other NotesVisibleContent. It can be used
to secure certain content with a NotesSecurityRole. The type property
defines the type of the section. The default value is “Table”.

4.3.4.1.12 NotesView
A NotesView is a DocumentCollection which is intended to be displayed.
If a NotesView inherits from a NotesForm, the layout of the NotesForm is
applied to the view.

4.3.4.1.13 Script
A Script is a program which is executed on the client side (in contrast to
an Action). A script is usually implemented in a scripting language, like
JavaScript, but it may also be, for example, an ActiveX component or Java
applet. The language property can be used to specify the programming
language. The default value is “JavaScript”. The type property defines the
type of control which should be used. The default value is “Link”.

4.3.4.1.14 ViewCategory
A ViewCategory is similar to a Category which is intended to be displayed.
It defines additional presentation options. The isExpandable property

36

specifies whether the category is presented as an expandable tree. The
default value is “true”. The icon property can be used for defining a URL
pointing to a picture which is used as a caption for the column. The default
value is null. The isSortable property specifies whether the view column
could be sorted by the user or not. The default value is “true”. The for-
mula property specifies a formula that is used to compute the values of the
column rows. The formula is executed for each document. The formula
may be given in precise natural language or as a Notes Formula Language
expression. The default is “name of property” which means the value of a
document item which is associated with the ViewCategory property name.
The caption for the column is defined by the caption property. The default
value is null.

4.3.4.2 Data Types

4.3.4.2.1 AnchorKind
An enumeration of all button-like control element types.

Type Description
Link A hyperlink
Button A button control element
Picture A picture containing sensitive areas

4.3.4.2.2 FormKind
An enumeration of form types provided by Notes.

4.3.4.2.3 ModeKind
An enumeration of all modes a form can be opened in. In Edit mode the
fields of a NotesForm are presented using editable control elements. If
opened in View mode the values are presented but cannot be changed.
The Preview mode is used when a document is opened in the Notes client
preview pane.

4.3.4.2.4 NavigatorKind
An enumeration of all navigator types provided by Notes. A Linklist is a
simple list of hyperlinks. The Outline navigator presents links or icons in a

37

hierarchical style. Within a Picture areas can be defined which function as
hyperlinks. A Page defines a custom page which can be used in behalf of a
navigation menu.

4.3.4.2.5 PageKind
An enumeration of different kinds of pages provided by Notes.

Type Description
Frameset A frameset which includes other content
Static A static page, similar to an HTML page
AboutDatabaseDocument A page intended to explain the database

4.3.4.2.6 SectionKind
An enumeration of all types of rectangular layout sections provided by
Notes. A Table is similar to an HTML table. Section is used for defin-
ing a some area which includes other elements. A TabbedPane presents its
content elements within a tabbed pane.

4.3.4.3 Examples

A complex example using most of the presentation component stereotypes
is shown in figure 11.

38

-firstname
-lastname
-email

«notesDocument»
Person

-customerID
-email
-firstName
-lastName

«notesDocument»
Customer

«action» +delete()
«action» +save()
«action» +edit()

«notesForm»
PersonDetails

«notesForm»
CustomerDetails

«script» +showAlert()

«computed» -currentTime

«notesPage»
MainPage

«notesPage»
MainFrame

{type = "frameset"}
«notesSection»

Content

«notesSection»
Navigation

1
*

1

*

*

-USCustomers*

«link»
{target="content"}

«computedField» -fullName
«field» -email

«notesForm»
CustomerOverview

«displays»

«category» -departmentAssignment
-firstname
-lastname
-city

«notesView»
USCustomersView

*

*

«collects»

{selection="country=='US'"}

«notesNavigator»
Navigator

{type = links}1
1

«notesSection»
Administration

1

1

«notesSection»
DisplayResources1

1

*

-Create new Person*
«link»

{target="content"
mode="new"}

-edit*

*

«link»

{target="content"
mode="edit"
hideWhen="not editor"}

{fullName:
 formula="firstname + ' ' + lastname"
email:
 hideWhen="empty"
 item="mail"}

«notesSection»
s1

{type = "table"}

11

1
1

«notesPage»
Welcome

1

1

«includes»

{selection="current User"
parts="firstname, lastname"}

{save:
 type="action",
 hideWhen="not in edit mode"
edit:
 type="hotspot",
 hideWhen="in edit mode"}

*
* «link»

{target="content"
mode="view"}

«defines»

«defines»

Figure 11: Complex example using the presentation component

39

4.3.5 Security Component

The Security component specifies stereotypes which can be used to model
application related or server related security. Application related security
includes SecurityRoles for modeling access rights of users to databases or
to certain parts of an application. To document server related security,
different certificate types and server setting stereotypes are provided.

The Security stereotypes diagram is shown in figure 12.

4.3.5.1 Stereotypes

4.3.5.1.1 NotesCertificate
A NotesCertificate represents a certificate issued by a certificate authority.
Hierarchical certificates are modeled using generalization associations. The
type property defines the field of usage of the certificate. The default value
is “NotesCertificate”. The other properties, contactInfo, expirationDate,
and description, are used to document important information for the cer-
tificate. The default values for these properties are null.

4.3.5.1.2 NotesPolicy
A NotesPolicy describes a policy document of a Notes server. A policy doc-
ument defines reusable settings, for example security related issues (like
password length), which can be applied to users or organizations. The
type property defines the scope of the NotesPolicy. The default value is
“organizational”. In case of hierarchical structuring of policy documents,
the parentPolicy property can be used to reference the parent policy. Al-
ternatively, a generalization association can be used. The default value for
this property is null. The description property can be used to document
additional information. The default value is null.

4.3.5.1.3 NotesPolicySettings
A NotesPolicySettings object describes a section of one ore more Note-
sPolicy documents. Dependent on the type of section, different settings
can be made (e.g., password quality is defined within the Registration
settings). A NotesPolicySettings must be the target of exactly one ag-
gregation dependency with a NotesPolicy as a source. The type property

40

-type : CertificateKind
-contactInfo
-expirationDate
-description

«stereotype»
NoDUMPProfile:: NotesCertificate

«metaclass»
UML::Class

-type : PolicyKind
-parentPolicy
-description

«stereotype»
NoDUMPProfile:: NotesPolicy

-type : PolicySettingsKind
-description
-settings

«stereotype»
NoDUMPProfile:: NotesPolicySettings

-applyTo
-type : SecurityRoleKind

«stereotype»
NoDUMPProfile:: NotesSecurityRole

-allow : SecureActionsKind[0..*]
-deny : SecureActionsKind[0..*]

«stereotype»
NoDUMPProfile:: Secures

«metaclass»
UML::Dependency

+NotesCertificate
+CrossCertificate
+InternetCertificate

«enumeration»
NoDUMPProfile:: CertificateKind

+Explicit
+Organizational

«enumeration»
NoDUMPProfile:: PolicyKind

+Archive
+Desktop
+Setup
+Registration
+Security

«enumeration»
NoDUMPProfile:: PolicySettingsKind

+Read
+Edit
+Create
+View
+Open
+*

«enumeration»
NoDUMPProfile:: SecureActionsKind

+User
+Group
+Role

«enumeration»
NoDUMPProfile:: SecurityRoleKind

Figure 12: Security Component Stereotypes

41

specifies the section of the NotesPolicy document. The default value is
“Security”. Concrete settings for a section are provided within the set-
tings property. See the Notes help for details on possible settings of single
sections. The default value is null. The description property is used for
collecting further descriptions. The default value is null.

4.3.5.1.4 NotesSecurityRole
A NotesSecurityRole defines a role name for a user or a group of users
and can be used to secure different parts of an application. A security
role may also be used in “hideWhen” formulas of NotesHideableEntities
(e.g., hideWhen=“user is not in role administrator”) but hiding elements
is no real security. The type property specifies the type of the role. The
default value is “Role” which means the applyTo formula is evaluated for
each user. The applyTo property specifies a boolean formula that is used
for NotesSecurityRoles of type “Role” to test whether a concrete user is
member of the current NotesSecurityRole. If evaluated to “true” a user is
a member of the NotesSecurityRole. The formula may be given in precise
natural language, as a boolean expression, or as a Notes Formula Language
expression. The default is “true”.

4.3.5.1.5 Secures
A Secures dependency is used to define allowed and prohibited actions a
user in a certain NotesSecurityRole can do with a secured element. The
allow property is a list of all allowed actions. The default value is “*” which
means that all actions are allowed. The deny property is a list of all denied
actions. The default value is null.

4.3.5.2 Data Types

4.3.5.2.1 CertificateKind
An enumeration of all types of certificates Notes provides. A NotesCer-
tificate is a Notes server or Notes user certificate. CrossCertificates are
used to cross certify other organizations. InternetCertificates are used for
secure connections over the web.

42

4.3.5.2.2 PolicyKind
An enumerations of possible scopes of a policy. An Organizational policy is
the default policy for an entire organization. An Explicit policy is a special
policy which can be applied to single users or groups.

4.3.5.2.3 PolicySettingsKind
An enumeration of all sections of a NotesPolicy. The Archive section con-
tains settings for mail archival. The Desktop section contains settings
for Notes clients. The Setup section contains settings for setting up new
Notes clients. The Registration section contains settings for registering
new users. The Security section contains settings for server related secu-
rity issues. See the Notes help for detailed information on each section.

4.3.5.2.4 SecureActionsKind
An enumeration of actions which can be allowed or denied.

Type Description
Read Read documents
Edit Edit documents
Create Create new documents
Open Access resource
“*” all above

4.3.5.2.5 SecurityRoleKind
An enumeration of possible types of a NotesSecurityRole. A User type
specifies a single user. A Group type specifies a certain group. A Role type
defines a conceptual name. In the latter case the membership of a user to
this role is evaluated dynamically.

4.3.5.3 Examples

An example on the usage of SecurityRoles within applications is shown in
figure 13. The documentation of security issues of a Notes server is shown
in figure 14.

43

-firstname
-lastname
-email

«notesDocument»
Person

«notesSecurityRole»
Admins

{applyTo = "The user who is represented by the person doc,
admin group Admins/LS1/IN/TUM/GlobalSE"}

«secures»

«notesDatabase»
Examples:: AddressBook

«notesSecurityRole»
Anonymous

«secures»

«action» +delete(){polymorph,sequentiell}
«action» +save(){polymorph,sequentiell}
«action» +edit(){polymorph,sequentiell}

«notesForm»
PersonDetails

«defines»

«secures»{allow="*"} {allow="read, edit"}

{allow="open"
deny="*"}

«secures»

{allow="read"
deny="edit"}

Figure 13: Usage of SecurityRoles for application

«notesCertificate»
LS1

{contactInfo = "TU Munich",
expiration = "AUG 2005",
type = "Notes Certificate"}

«notesCertificate»
TUM

{contactInfo = "TU Munich"}

«notesCertificate»
IN

{contactInfo = "TU Munich"}

«notesCertificate»
LS1/IN/TUM/GlobalSE

{contactInfo = "TU Munich",
expiration = "AUG 2005",
type = "Cross Certificate"}

«notesPolicy»
InternetUsers

{parentPolicy = "Guests/LS1/IN/TUM/GlobalSE",
type = "Organizational"}

«notesPolicySettings»
InternetUserRegistrationSettings

{passwordQuality = "8",
registrationServer = "tum.globalse.org",

type = Registration}

1*

«notesPolicySettings»
InternetUserArchiveSettings

{type = Archive}

1 *

Figure 14: Documentation of server security

44

-language : ServerSideLanguageKind

«stereotype»
NoDUMPProfile:: NotesAgent

«metaclass»
UML::Interface

-name
-type : DatabaseKind

«stereotype»
NoDUMPProfile:: NotesDatabase

«metaclass»
UML::Artifact

«metaclass»
UML:: Component

-key

«stereotype»
NoDUMPProfile:: NotesDocument

«stereotype»
NoDUMPProfile:: NotesDocumentCollection

«metaclass»
UML::Node

-ports : PortKind
-tasks : TaskKind
-aliases

«stereotype»
NoDUMPProfile:: NotesServer

-isUserSettings

«stereotype»
NoDUMPProfile:: NotesSettings

«metaclass»
UML::Association

«stereotype»
NoDUMPProfile:: Replica

-port : PortKind
-tasks : TaskKind
-schedule

«stereotype»
NoDUMPProfile:: ServerConnection

+*
+SMTP
+HTTP
+IIOP
+LDAP
+Replication

«enumeration»
NoDUMPProfile:: TaskKind

+TCPIP
+*
+LocalNetwork

«enumeration»
NoDUMPProfile:: PortKind

Figure 15: Topology Component Stereotypes

4.3.6 Topology Component

The Topology component specifies stereotypes which can be used to model
dependencies between database instances and to document the concrete
deployment of databases and server connections. Some stereotypes within
the Topology component refine stereotypes introduced before.

The Topology stereotypes diagram is shown in figure 15.

45

4.3.6.1 Stereotypes

4.3.6.1.1 NotesAgent (refined)
A NotesAgent in a topology sense is represented as an interface which can
be exported by a NotesDatabase component.

4.3.6.1.2 NotesDatabase (refined)
A NotesDatabase in a topology sense is a component exporting its inter-
faces (that is public agents, documents and document collections). If a
NotesServer node runs instances of a database, the database is represented
as an artifact deployed to the server.

4.3.6.1.3 NotesDocument (refined)
A NotesDocument in a topology sense is represented as an interface which
can be exported by a NotesDatabase component.

4.3.6.1.4 NotesDocumentCollection (refined)
A NotesDocumentCollection in a topology sense is represented as an in-
terface which can be exported by a NotesDatabase component.

4.3.6.1.5 NotesServer
A NotesServer is a node within a deployment diagram. It can include
artifacts (like for example NotesDatabases) and can have connections to
other servers (Notes and Non-Notes servers). The ports property defines
available connection types to be used by the server. The default value is
“TCP/IP”. The tasks property is a list of server tasks which are started on
the server. The default value is “*” which means that all tasks are running.
The aliases property is a list of URLs which function as aliases for the
server. The default value is null.

4.3.6.1.6 NotesSettings (refined)
A NotesSettings in a topology sense is represented as an interface which
can be exported by a NotesDatabase component.

46

4.3.6.1.7 Replica
A Replica association indicates instances of a database on two different
Notes servers which will be replicated. Source and target of a Replica as-
sociation must be NotesDatabase instances. A Replica may be a directed
association. In this case, only changes within the database at the associa-
tion source are replicated into the database at the association target.

4.3.6.1.8 ServerConnection
A ServerConnection association is used to specify connections and con-
nection attributes between two servers. The port property specifies which
connection type should be used. The default value is “TCP/IP”. The tasks
property specifies the protocol which is used for the connection. The de-
fault value is “SMTP”. The schedule property is used for replication con-
nections. It can be used to specify the interval or periods when two Notes
servers should replicate.

4.3.6.2 Data Types

4.3.6.2.1 PortKind
An enumeration of possible network connection types.

Type Description
TCP/IP Use TCP/IP connection
Local Network Use local network connection
“*” Use any available connection

4.3.6.2.2 TaskKind
An enumeration of all available Notes server tasks. A Notes server task
implements a certain network protocol.

4.3.6.3 Examples

Figure 16 shows an example diagram for modeling dependencies between
database applications. An example deployment diagram for modeling server
topologies is shown in figure 17.

47

«notesDatabase»
Directory

«notesDatabase»
AddressBook

«notesDatabase»
Registration

{name = "ProjectRegistration.ntf",
type = "template"}

«notesDocument» Person

«notesView» PeopleByGroup

«notesDocument» Group

«notesAgent» UpdateAddressBook

«creates»

«uses»

«uses»

«uses»

«runs»

{parts="members"}

Figure 16: Database dependencies example

«notesServer»
tum.globalse.org
{aliasses = "wwwbruegge, sunbruegge",
ports = "TCPIP",
tasks = "SMTP, HTTP"}

«notesServer»
tumdev.globalse.org
{tasks = "SMTP, HTTP, IIOP"}

«notesDatabase»
ARENA AddressBook : AddressBook

{path = "data/projects/ARENA/address.nsf"}

«notesDatabase»
ARENA AddressBook : AddressBook

{path = "chair/course/current/ARENA/address.nsf"}

1

1

«replica»

«notesDatabase»
ARENA AddressBook : AddressBook

{path = "ProjectAddressBook.ntf",
type = "template"}

Mailrelay

1

1

«notesServerConnection»

1

1

«notesServerConnection»

{type="SMTP"
port="*"
interval="5"
tasks="SMTP"
to="anyhost"}

{type="Local Network"
port="TCPIP"
schedule="8:00 AM-10:00 PM"
tasks="rep"
interval="360"}

Figure 17: Example deployment diagram for server topologies

48

5 Translation of NoDUMP Models

This section describes the most important translation rules for translating
NoDUMP models into Notes database skeletons. Each rule is given in a
graphical notation. On the left side, a NoDUMP compliant UML model
showing a certain construct is presented. On the right side the instances
of Notes objects after the translation process are shown (see Lotus Notes
Architectural Model, section 3) . All rules can be combined in any order for
translating complex NoDUMP models.

«notesDatabase»
A

name = A.nsf
isTemplate : boolean = true

A : Database

Figure 18: Simple translation of a database

«notesDatabase»
A

.

«notesDatabase»
B

name = A.nsf
isTemplate : boolean = true

A : Database

name = A/B.nsf
isTemplate : boolean = true

B : Database

design inheritance

Figure 19: Translation of subpackages

49

«notesDatabase»
A

.

B

.

«notesDesignDocument»
C

name = A.nsf
isTemplate : boolean = true

A : Database

uid
name = A.B.C

C : Design Document

1

Figure 20: Naming of design documents

name = b
type = c
translation formula
validation formula

b : Field

1

-b : c

«notesDocument»
A

uid
name = A

A : Subform

Figure 21: Translation of abstract documents

«notesDocument»
A

uid
name = A

A : Subform

uid
name = AImpl

A Impl : Form

1

value = "A":"AImpl"

DocumentClasses : Field

1

Figure 22: Translation of concrete non-final documents

50

«notesDocument»
A

«notesDocument»
B

uid
name = AImpl

A Impl : Form

uid
name = BImpl

B Impl : Form

uid
name = A

A : Subform

uid
name = B

B : Subform

value = "A":"AImpl"

DocumentClasses : Field

value = "A":"B":"BImpl"

DocumentClasses : Field

1

1

1

1
1

Figure 23: Translation of generalization

«notesDocument»
A

«notesDocument»
B

-c

-d

uid
name

A : Subform

uid
name

B : Subform

name = c
type = uid
translation formula
validation formula = @IsMember("B";@GetDocField(c;"DocumentClasses"))

c : Field

name = d
type = uid
translation formula
validation formula = @IsMember("A";@GetDocField(d;"DocumentClasses"))

d : Field

1

1

Figure 24: Translation of associations

«notesDocument»
B

«notesDocumentCollection»
A

«collects»

uid
name
columns
selectionFormula = @IsMember("B";DocumentClasses) & c="b"
formFormula

A : View

{selection="c='b'"}

Figure 25: Translation of ¿collectsÀdependencies

«notesView»
A

«notesForm»
B

«notesDocument»
C

«collects»
«displays»

uid
name
columns
selectionFormula = @IsMember("C";DocumentClasses)
formFormula = "B"

A : View

«link»

Figure 26: Translation of a NotesView

51

6 NoDUMP Development Process

6.1 Use Case Model

Figure 27 shows the use case model for NoDUMP when used within a sur-
rounding software development process, like for example the Rational Uni-
fied Process (RUP) as described in [RUP].

Because NoDUMP is realized as an extension to the UML, Notes application
development can be integrated into all UML based software engineering
processes. But of course, some general activities during developing with
NoDUMP can be discovered, independently from the surrounding process.
The different degrees of Notes-related detail within single activities should
be considered when choosing a process or planning a project.

6.1.0.4 Description of the Developer Roles

Requirements Engineer: Gathers and documents requirements together
with the Application Domain Expert.

Application Domain Expert: An expert who knows the application do-
main in detail. Usually, the Application Domain Expert is on cus-
tomer side.

Analyst: Analyses the requirements and develops an analysis model in-
cluding the UML application domain model.

Software Architect: The Software Architect designs high level software
architecture and has at least some experience in using UML.

NoDUMP Specialist: A developer who knows how to use NoDUMP for
developing Notes Applications. He does not necessarily know Notes
in detail.

Notes Programmer: A developer who is skilled in programming Notes ap-
plications.

NoDUMP Code Generator A software tool similar to a compiler which
takes a NoDUMP model as an input and generates Notes database
skeletons.

52

Gather Requirements

Analyze
Application Domain

Make Design
Decisions

Develop Dedailed
Design

Generate Database
Skeletons

Implement Code

Deploy and
Maintain Application

Requirements Engineer

Application Domain Expert

Analyst

Notes Programmer

NoDUMP Specialist

Code Generator

Notes Administrator

Software Architect

NoDUMP

Evaluate System
under Development

Development
Process (e.g. RUP)

<<includes>>

Figure 27: The Use Case Model

53

Notes Administrator: The Notes Administrator administrates and main-
tains the Notes server and deployed applications. Usually the Notes
Administrator is employed on the customer side.

6.1.0.5 Description of the Use Cases

Gather Requirements: The goal of requirements gathering is to express
what the proposed system should do. For this task, Requirements
Engineers usually work together with Application Domain Experts.
Details on the requirement gathering phase are defined by the sur-
rounding software development process.

Analyze Application Domain: Analysis of the application domain is the
process of examining the requirements and making a conceptual model
of the system to be built. For this task, Analysts usually work together
with Application Domain Experts. Details on the analysis phase are
defined by the surrounding software development process.

Evaluate System under Development: The system under development has
to be evaluated by the software developers and the customer on a
regular basis. The frequency of evaluations and their participants are
defined by the surrounding software development process. Usually, at
least Analysts and Application Domain Experts participate in these
meetings. As an evaluation basis, working prototypes of the Notes
applications, possibly generated out of the NoDUMP model, as well
as the NoDUMP model itself are used.

Make Design Decisions: During developing detailed designs, design deci-
sions have to be made. These design decisions include architectural
issues as well as definition of subsystem boundaries. Software Ar-
chitects will make these decisions together with NoDUMP Special-
ists. Collections of Notes specific software patterns expressed with
NoDUMP can speed up finding possible solutions for common design
problems. Interfaces between Notes applications and other software
systems are documented with NoDUMP .

Develop Detailed Design: The goal of this use case is to develop a de-
tailed design model out of the analysis model to make the system
realizable in software. In case of Notes applications, a NoDUMP com-
pliant model has to be developed. This task is realized by NoDUMP

54

Specialists together with Architects. The single activities and their
contents are defined by the surrounding process.

Implement Code: Generated Notes database skeletons have to be com-
pleted with code which could not be generated out of the NoDUMP
model. This task is performed by Notes Programmers who use the
Lotus Notes/Domino development tools and refer to the analysis doc-
uments as well as the NoDUMP model.

Generate Database Skeletons: The generation of Notes database skele-
tons from NoDUMP compliant models is done by a Generator. This
task includes validation of the model with reference to the NoDUMP
specification and transforming it into a Notes binary format or the
“Lotus Domino XML” format.

Deploy and Maintain Application: After a successful client acceptance test
a Notes Administrator is responsible for deploying and maintaining
the Notes applications. The Administrator uses NoDUMP to doc-
ument the concrete deployment and collaborations of the different
databases and servers. For maintenance issues, the Administrator
can refer to the documentation of the database which includes the
detailed NoDUMP models.

6.2 NoDUMP in the Project Lifecycle

The integration of NoDUMP into an iterative process is shown in Figure 28.
The phases correspond to the Rational Unified Process phases described in
[RUP].

During the design phase, a detailed model of the application is developed.
In case of Notes development, this model is compliant to NoDUMP , so a
code generator can be used to generate Notes database skeletons. These
skeletons will be implemented during the implementation phase.

After testing the current system under development, the test-results will be
evaluated against the requirements analysis document. During the evalu-
ation phase the NoDUMP detailed model may be refined and functions as
an input for the next iteration.

55

Requirements Gathering

Analysis

Design

ImplementationEvaluation

/ Initial Planning

Requirements Analysis Document

/ code generation

Test

/ Deployment

Application Domain Model

NoDUPM Detailed Model

Notes DatabasesTestreport

/ refinement

Figure 28: Integration of NoDUMP into RUP

56

7 Future Work

• Add a “behavior component” for modeling behavioral issues. Exam-
ples could be to model states of documents as state machines or to
model user interactions across several forms as activity diagrams

• Complete and refine translation rules described in 5.

• Develop a NoDUMP model validation tool which takes UML diagrams
in XMI file format (XML Metadata Interchange) and validates it against
the NoDUMP well-formedness rules.

• Develop a code generator which takes NoDUMP compliant UML di-
agrams in XMI file format and transforms it into Lotus Domino XML
format according to 5.

• Develop a refactoring tool which takes Lotus Domino XML files and
transforms them into NoDUMP compliant UML models.

• Integrate NoDUMP into state-of-the-art development platforms, like
for example JBuilder or Eclipse.

57

Appendices

A

List of Figures

1 Lotus Notes Architectural Model 12

2 Lotus Notes Design Documents Model 14

3 The components of the NoDUMP Profile 18

4 Foundation Component Stereotypes 20

5 Database Component Stereotypes 23

6 Example using the Database Component 27

7 Application Component Stereotypes 29

8 Example using the Application Component 31

9 Example using NotesClientSideObjects 32

10 Presentation Component Stereotypes 34

11 Complex example using the presentation component 39

12 Security Component Stereotypes 41

13 Usage of SecurityRoles for application 44

14 Documentation of server security 44

15 Topology Component Stereotypes 45

16 Database dependencies example 48

17 Example deployment diagram for server topologies 48

58

18 Simple translation of a database 49

19 Translation of subpackages 49

20 Naming of design documents 50

21 Translation of abstract documents 50

22 Translation of concrete non-final documents 50

23 Translation of generalization 51

24 Translation of associations 51

25 Translation of ¿collectsÀdependencies 51

26 Translation of a NotesView 51

27 The Use Case Model . 53

28 Integration of NoDUMP into RUP 56

B

References

[RUP] The Rational Unified Process: An Introduction, Addison Wesley Long-
man, 1999

[OOSE] Bernd Brügge, Allen H. Dutoit, Object-Oriented Software Engineer-
ing, Prentice Hall, New Jersey, USA, 2003.

[NotesUnleashed] Steve Kern, Deborah Lynd, Lotus Notes and Domino 5
Development Unleashed, SAMS, 1999.

[NotesBestPractice] Lotus Notes & Domino - Best Practices Guide, Lotus De-
velopment Corp., http://www.lotus.com/bpg (as Notes Helpfile)

[Ives1999] Teamstudio DesignSystem, Software Engineering with Lotus
Notes and Domino, Ives Development Inc., White Paper, Edition 2, 1999,
http://www.teamstudio.com

59

[MOF2003] Object Management Group, Meta Object Facility Specification,
http://www.omg.org/cgi-bin/apps/doc?formal/02-04-03.pdf

[UML1.0] Object Management Group, OMG Unified Modeling Lan-
guage Specification, http://www.omg.org/cgi-bin/apps/doc?formal/03-
03-01.pdf

[UML2Infra] Object Management Group, UML 2.0 Infrastructure Specifica-
tion, http://www.omg.org/cgi-bin/apps/doc?ptc/03-09-15.pdf

[UML2Super] Object Management Group, UML 2.0 Superstructure Specifi-
cation, http://www.omg.org/cgi-bin/apps/doc?ptc/03-08-02.pdf

[Lotus Notes Webportal] IBM, Lotus, Lotus Notes Webportal and Foras,
http://www.notes.net

[Dutoit 2002] S.K. Chang, Allen H. Dutoit, Barbara Paech, Handbook of
Software Engineering and Knowledge Engineering Chapter ”Rationale
Management In Software Engineering”, World Scientific

[CORBA UML Profile] Object Management Group, UML
Profile for CORBA Specification (based on UML 1.0),
http://www.omg.org/docs/formal/02-04-01.pdf

[TestingProfile] Object Management Group, UML Profile for Testing Frame-
works (based on UML 2.0), http://www.omg.org/docs/ptc/03-08-03.pdf

60

