
Technische Universität
München

Fakultät für Informatik

d d d d

dd
d dd

d
dd
d

dd
d

d d dd

Lotus Notes/Domino

Unified Modeling Process

- Systementwicklungsprojekt -

Juni 2004

Christoph Angerer
angerer@in.tum.de · Matrikelnummer: 2292793

Aufgabensteller:
Prof. Bernd Brügge, Ph.D.

Betreuer:
Oliver Creighton

Technische Universität München · Sommersemester 2004

Special thanks to Tobias Klüpfel for all the valuable discussions

Abstract

“In too many organizations, Lotus Notes and Domino application develop-
ment is out of control.” [Ives1999]

Lotus Notes popularized the concept of groupware, and with it the promise
of rapid application development. But, as more organizations started to
embrace Notes, the demand for more sophisticated features grew and re-
sulted in what is today a rather complex development environment.

Besides IBM, several companies offer development tools which can help
reduce this complexity. However, current solutions mostly support single
development tasks, such as versioning or configuration management. But
the remaining lack of a clear and standardized methodology for developing
Notes applications still leads to an opaque development process reserved to
Notes experts.

This paper describes NoDUMP (Notes/Domino Unified Modeling Process),
an extension to the UML, which enables developers to use state-of-the-art
UML based software development processes and object-oriented method-
ologies to model Notes applications. By using UML as a basis, software
developers with different areas of expertise in the field of software devel-
opment can communicate and document their solutions across all phases
of the development process. Additionally, the extended UML models could
be used for automated code generation of Notes databases.

In conclusion, two case studies show the practical usage of NoDUMP and
how it can be applied to real life projects.

Contents

1 Motivation 7

2 Requirements Elicitation 7

2.1 Scenario . 7

2.2 Problem Statement . 9

2.3 Scope of the Solution . 9

2.4 Requirements . 10

2.4.1 Functional Requirements 10

2.4.2 Nonfunctional Requirements 10

2.5 Use Case Model . 11

2.6 NoDUMP in the Project Lifecycle 15

3 Lotus Notes Architectural Model 16

3.1 Basic Architecture . 17

3.2 Lotus Notes Design Documents 17

4 System Design 19

4.1 Design Goals . 19

4.2 Subsystem Decomposition 20

5 The NoDUMP Specification 21

6 Case Studies 23

6.1 Design Database . 23

6.1.1 Problem Statement 23

5

6.1.2 Analysis . 23

6.1.3 Top Level Design . 25

6.1.4 Detailed Design . 27

6.1.5 Implementation . 28

6.2 iTrack . 29

6.2.1 Problem Statement 29

6.2.2 Analysis . 29

6.2.3 Top Level Design . 29

6.2.4 Detailed Design . 31

6.2.5 Implementation . 34

6.3 Requirements Evaluation . 35

6.3.1 Fulfilled Requirements 35

6.3.2 Partly Fulfilled Requirements 35

6.3.3 Unjudged Requirements 36

7 Future Work 37

Appendices 38

A Extending UML 38

B List of Figures 40

C References 41

6

1 Motivation

“Lotus Domino provides a multiplatform foundation for collaboration and
e-business, driving solutions from corporate messaging to Web based trans-
actions - and everything in between.” (http://www.lotus.com/domino)

Since its introduction to the market in 1989 the fundamental document-
based object model of Lotus Notes/Domino has been retained mostly un-
changed. While inveterate Notes developers praise this document-centric
view as the perfect way for building groupware applications, software en-
gineers who are not used to it flinch from using Notes because of the same
reason. Object-oriented software engineering as a way of conquering com-
plex and changing systems fails when it comes to Notes.

Currently, no sufficient and standardized methodology for developing Notes
applications exists, even though it is often requested in Notes related news-
groups. Some developers try to use entity relationship diagrams or UML
(Unified Modeling Language) to do some analysis and to define the data
model for their applications. But none of these methods are capable of
describing entire Notes applications.

Because of the lack of a sufficient modeling technique, the development
of Notes applications is still reserved to experts. This causes a blurring
of common developer roles where analysts and architects design a system
while programmers and designers build the application and its user inter-
face. During all stages of a development process, real Notes experts have
to be involved.

2 Requirements Elicitation

2.1 Scenario

Actors

Actor Description
BioNews Exchange Inc. Company which organizes conferences, customer
SoftApps Inc. Small company specialized on web applications
Susan Analyst at SoftApps Inc., Notes rookie
Toby K. Notes expert, Lotus Certified Developer

7

BioNews Exchange Inc. is a company which organizes conferences in the
field of gene manipulated food. Because the number of participants in-
creased steadily over the last years, BioNews Exchange Inc. wants to im-
prove the whole participant management. Therefore SoftApps Inc. gets an
order to develop a webbased software system for this task.

At a first step, Susan takes through an as-is analysis of how participants
are managed within BioNews Inc. today, including registration of par-
ticipants to a conference, billing of visited conferences, booking of hotel
rooms, sending news to registered people and much more. Based on this
information, Susan and her team write an analysis document containing
the problem statement, the requirements, use cases and the application
domain model.

Based on the application domain model, SoftApps Inc. decides to realize
the system using Lotus Notes/Domino. The rationale behind this decision
is not so much the broad functionality of Notes, which could be used, but
more the structure of the application domain. It turns out, that the whole
model is ruled by inheritance relationships which are more difficult to re-
alize using a relational database management system than using Notes.

Toby, as the Notes expert of SoftApps Inc., takes the UML application do-
main model as the starting point to develop the system design. In a first
step, he refines and annotates the model conforming to the NoDUMP UML
Profile and uses the Model-View-Controller paradigm to design the user in-
terface and functional elements. The automated generation transforms the
model into a partly-functional Notes database skeleton at every time.

During the whole development process, Toby as the Notes expert and Su-
san as the application domain expert, who does not know Notes in detail,
can talk about the solution on a strictly UML basis. The generated proto-
types are used to validate the system under development referring to the
Requirements Analysis Document and BioNews Exchange Inc. officials.

After the successful client acceptance test, the whole system is handed over
to BioNews Exchange Inc. Together with the binaries, a complete documen-
tation of the developed system is delivered. This documentation includes
the annotated UML diagrams which describe all aspects of the Notes solu-
tion, supporting future changes and maintenance.

8

2.2 Problem Statement

In contrast to object-oriented software design patterns, within Notes, the
data schema, the user interface, and parts of the business logic are all in-
tended to be packed together into single objects, called “Documents”. The
resultant huge complexity for stand-alone Notes applications becomes even
worse when Notes is to be integrated into larger software systems. The ab-
sence of a common platform for communication between Notes experts and
the other developers affects the whole development process, from require-
ments elicitation through implementation up to documentation.

The goal of this paper is to develop a UML Profile (an extension to the UML)
which is capable of describing Notes applications and which forms the basis
for the integration of Notes development with state-of-the-art UML based
development processes, like for example the Rational Unified Process. This
extension should also be usable and understandable by developers who
do not know Lotus Notes/Domino in detail. Additionally, translation rules
will be elaborated which can be used in the future to develop tools which
automate the generation of Notes databases from an abstract model.

2.3 Scope of the Solution

UML defines numerous diagrams and diagram elements which can be used
to model different aspects of a system, from requirements over static de-
sign up to dynamic behavior. Especially the dynamic view onto a Notes
application would be important, not only to model the flow of form-based
web-applications but also to model functional elements like Notes agents.

On the other hand, Notes is more than just a framework for custom ap-
plications. Replication mechanisms, load balancing and LDAP services as
well as mail routing functionality and integration with other application
or database servers make it important to model server setup and security
issues carefully in order to keep a complex server topology up and running.

Because NoDUMP is a first step to standardize modeling and documen-
tation for Notes, NoDUMP focuses on these static structures and leaves
dynamic issues for future work.

Furthermore, NoDUMP is specialized on web usage. With NoDUMP , it is
not possible to express special features of the Notes client which can not

9

be directly used for web applications. But most of these features could be
modeled using NoDUMP by adding additional information for the develop-
ers how to handle them (e.g., “realize this ’View’ as a ’Notes Folder’ ”).

2.4 Requirements

2.4.1 Functional Requirements

MVC Paradigm: Because Notes is commonly used to realize interactive ap-
plications, the Model-View-Controller design must be supported by
NoDUMP .

Fit into Common UML Processes: NoDUMP must fit into state-of-the-art
engineering processes. That is: Models describing Notes specific parts
can be used together with models describing other subsystems of the
application. Standard UML models can be refined later to be imple-
mented in Notes.

Server Topologies: It must be possible to model server topology issues
with NoDUMP , like replication and mail routing within a Notes clus-
ter. Additionally, database dependencies like design inheritance or
inter-database relationships must be describable in order to plan de-
ployment of new applications and to document collaboration of servers
and databases.

Code Generation: A NoDUMP compliant model must be detailed enough
to serve as an input for automatic generation of Notes database skele-
tons.

UML 2.0 Compliance: NoDUMP must be compliant to the UML 2.0 speci-
fication described in [UML2Infra]

2.4.2 Nonfunctional Requirements

Focus on UML Users: Models compliant to NoDUMP should be understand-
able for users who are familiar with UML and do not necessarily know
Notes in detail.

Default Meanings and Values: NoDUMP compliant models must be de-
tailed enough to generate meaningfull Notes database skeletons. At

10

the same time, the models should be understandable and easy to use.
Therefore, default meanings and values for all stereotypes and tagged
values should be provided wherever possible, in order to be able to
leave out unnecessary information.

Support Notes Integration: Notes applications can be used to realize sub-
systems of larger software systems. Therefore, it should be possible
to model interfaces between Notes and Non-Notes systems explicitly
to gain a clear system boundary.

Support Design Patterns: It should be possible to develop and document
Notes specific design patterns with NoDUMP .

2.5 Use Case Model

Figure 1 shows the use case model for NoDUMP when used within a sur-
rounding software development process, like for example the Rational Uni-
fied Process (RUP) as described in [RUP].

Because NoDUMP is realized as an extension to the UML, Notes application
development can be integrated into all UML based software engineering
processes. But of course, some general activities during developing with
NoDUMP can be discovered, independently from the surrounding process.
The different degrees of Notes-related detail within single activities should
be considered when choosing a process or planning a project.

2.5.0.1 Description of the Developer Roles

Requirements Engineer: Gathers and documents requirements together
with the Application Domain Expert.

Application Domain Expert: An expert who knows the application do-
main in detail. Usually, the Application Domain Expert is on cus-
tomer side.

Analyst: Analyses the requirements and develops an analysis model in-
cluding the UML application domain model.

Software Architect: The Software Architect designs high level software
architecture and has at least some experience in using UML.

11

Gather Requirements

Analyze
Application Domain

Make Design
Decisions

Develop Dedailed
Design

Generate Database
Skeletons

Implement Code

Deploy and
Maintain Application

Requirements Engineer

Application Domain Expert

Analyst

Notes Programmer

NoDUMP Specialist

Code Generator

Notes Administrator

Software Architect

NoDUMP

Evaluate System
under Development

Development
Process (e.g. RUP)

<<includes>>

Figure 1: The Use Case Model

12

NoDUMP Specialist: A developer who knows how to use NoDUMP for
developing Notes Applications. He does not necessarily know Notes
in detail.

Notes Programmer: A developer who is skilled in programming Notes ap-
plications.

NoDUMP Code Generator A software tool similar to a compiler which
takes a NoDUMP model as an input and generates Notes database
skeletons.

Notes Administrator: The Notes Administrator administrates and main-
tains the Notes server and deployed applications. Usually the Notes
Administrator is employed on the customer side.

2.5.0.2 Description of the Use Cases

Gather Requirements: The goal of requirements gathering is to express
what the proposed system should do. For this task, Requirements
Engineers usually work together with Application Domain Experts.
Details on the requirement gathering phase are defined by the sur-
rounding software development process.

Analyze Application Domain: Analysis of the application domain is the
process of examining the requirements and making a conceptual model
of the system to be built. For this task, Analysts usually work together
with Application Domain Experts. Details on the analysis phase are
defined by the surrounding software development process.

Evaluate System under Development: The system under development has
to be evaluated by the software developers and the customer on a
regular basis. The frequency of evaluations and their participants are
defined by the surrounding software development process. Usually, at
least Analysts and Application Domain Experts participate in these
meetings. As an evaluation basis, working prototypes of the Notes
applications, possibly generated out of the NoDUMP model, as well
as the NoDUMP model itself are used.

Make Design Decisions: During developing detailed designs, design deci-
sions have to be made. These design decisions include architectural

13

issues as well as definition of subsystem boundaries. Software Ar-
chitects will make these decisions together with NoDUMP Special-
ists. Collections of Notes specific software patterns expressed with
NoDUMP can speed up finding possible solutions for common design
problems. Interfaces between Notes applications and other software
systems are documented with NoDUMP .

Develop Detailed Design: The goal of this use case is to develop a de-
tailed design model out of the analysis model to make the system
realizable in software. In case of Notes applications, a NoDUMP com-
pliant model has to be developed. This task is realized by NoDUMP
Specialists together with Architects. The single activities and their
contents are defined by the surrounding process.

Implement Code: Generated Notes database skeletons have to be com-
pleted with code which could not be generated out of the NoDUMP
model. This task is performed by Notes Programmers who use the
Lotus Notes/Domino development tools and refer to the analysis doc-
uments as well as the NoDUMP model.

Generate Database Skeletons: The generation of Notes database skele-
tons from NoDUMP compliant models is done by a Generator. This
task includes validation of the model with reference to the NoDUMP
specification and transforming it into a Notes binary format or the
“Lotus Domino XML” format.

Deploy and Maintain Application: After a successful client acceptance test
a Notes Administrator is responsible for deploying and maintaining
the Notes applications. The Administrator uses NoDUMP to doc-
ument the concrete deployment and collaborations of the different
databases and servers. For maintenance issues, the Administrator
can refer to the documentation of the database which includes the
detailed NoDUMP models.

14

Requirements Gathering

Analysis

Design

ImplementationEvaluation

/ Initial Planning

Requirements Analysis Document

/ code generation

Test

/ Deployment

Application Domain Model

NoDUPM Detailed Model

Notes DatabasesTestreport

/ refinement

Figure 2: Integration of NoDUMP into RUP

2.6 NoDUMP in the Project Lifecycle

The integration of NoDUMP into an iterative process is shown in Figure 2.
The phases correspond to the Rational Unified Process phases described in
[RUP].

During the design phase, a detailed model of the application is developed.
In case of Notes development, this model is compliant to NoDUMP , so a
code generator can be used to generate Notes database skeletons. These
skeletons will be implemented during the implementation phase.

After testing the current system under development, the test-results will be
evaluated against the requirements analysis document. During the evalu-
ation phase the NoDUMP detailed model may be refined and functions as
an input for the next iteration.

15

Notes Server

-port

Server Task

HTTP Task

SMTP Task

Browser

Mail Client

-name
-isTemplate : boolean

Database

Access Control List

System Database

names.nsf

-uid

Document

-name

Design Document

-name
-values

Item

1 *

1

*

1

1

1

* 1 *

...

...

Figure 3: Lotus Notes Architectural Model

3 Lotus Notes Architectural Model

This chapter gives an overview over the most important entities within
Notes. Figure 3 shows the basic architectural model of Notes and figure
4 shows a conceptual model of the design documents provided by Notes.
Both figures will be explained in the following two sections.

16

3.1 Basic Architecture

The Notes Server is the central application which manages all databases
and server tasks.

For communication with other software systems, several Server Tasks can
be started. Each server task realizes a certain protocol, e.g., for communi-
cation over HTTP, SMTP or LDAP. A task usually accesses the databases on
the server, processes the request and generates an appropriate response for
the client.

The principle building block of a Notes application is the Database. But a
Database does not only contain data, as the name may imply, but also holds
the business logic and design elements. Therefore, a Database is usually an
entire application. The access rights to a Database are defined by an Access
Control List.

The Notes server itself heavily uses databases for realizing its own man-
agement tasks. These System Databases are used for server configuration,
user management, error logging, mailing purposes and so on.

The structure in which a Database stores its data is called Document. A
unique id is automatically assigned to a Document on creation. In contrast
to “record sets” used by relational database management systems, a Doc-
ument does not define any schema for its data. Instead, a Document uses
name-values pairs which can be inserted dynamically.

3.2 Lotus Notes Design Documents

Design Documents hold the data schemas, business logic, and user in-
terface (the “source code” of a Notes application). As shown in figure 3,
Design Documents are similar to any other Document storing application
data. Therefore, all mechanisms like replication or versioning provided by
the Notes Server can be used for the source code itself. This enables the de-
velopers to distribute application changes over several database instances
and even Notes Servers.

Figure 4 shows the most important Design Document types provided by
Notes as well as their conceptual dependencies. Overall, Notes provides 12
different types of Design Documents for different purposes.

17

Page

-entries

Outline

FormSharedField

-code

SharedAction

-code

ScriptLibrary

-name

Design Document

-code

Agent

Subform

-columns
-selectionFormula
-formFormula

View

-formula

ComputedText

-content
-acl

Section

-code

Action

-rows
-columns

Table

-buttons

Navigator

EmbeddbleDesignDocument

-name

DesignElement

1 *
1

*

ContentDesignDocument

1

*

1

-type
-translation formula
-validation formula

Field

Figure 4: Lotus Notes Design Documents Model

DesignElements can be used within ContentDesignDocuments for layout
and functional purposes, but a DesignElement is no DesignDocument by
itself and can therefore not be replicated. Examples for DesignElements
are Tables for layouting or Actions, similar to HTML-links or buttons, for
executing server side code.

EmbeddableDesignDocuments are concrete DesignDocuments but they
can only be displayed to the user by embedding them into a Content-
DesingDocument. Navigators and Outlines are used to realize different
types of user menus. SharedActions define a piece of code which is exe-
cuted when a button or link is pressed. Views are used to select a subset
of all existing documents of a database and present them in a tabular style.
Which documents should be included within a view is defined by a “selec-
tion formula”, similar to an SQL statement. If a View should be directly dis-
played to a user, either a Notes default form or a customized view template
form is used, so a View is alway embedded into a Form when presented.

The user interface is realized by ContentDesignDocuments . They can
include text, pictures, DesignElements as well as EmbeddedDesignDoc-
uments to present content. Pages are used for static content, similar to

18

HTML pages. Forms create or display dynamic content stored in the Doc-
uments of a Database. Fields or SharedFields access the corresponding
values of the Document for presentation or editing. Fields and values are
associated by name equality. Subforms are very similar to Forms but they
can only occur within a surrounding Form.

Most of the business logic of Notes applications is realized within Agents.
An Agent is a piece of code which can be executed on certain events. These
events may be triggered by the user (e.g., by pressing a button) or by sys-
tem events (e.g., on schedule). Code which is used by multiple Agents or
Actions can be separated into ScriptLibraries.

4 System Design

4.1 Design Goals

The NoDUMP Profile extension to the UML has been designed with the
following design principles in mind:

Readability of Diagrams While it is possible to include loads of Notes-
related information into the diagrams, this is not strictly necessary.
Detailed information can be left out without changing the meaning
of the models. Together with context-related default stereotypes the
readability of the resulting diagrams can be maximized.

Components for single Tasks Each component of NoDUMP can be used
to design and model different aspects of an application, like for ex-
ample data model, business logic or user interface. This allows to
define developer roles and responsibilities and supports a clear struc-
ture within Notes Applications.

System Boundary In order to gain a well-defined interface between Notes
databases and external applications NoDUMP cannot be mixed with
standard UML elements or other UML profiles within one package.
In case non-stereotyped UML elements are used within a NoDUMP
model, default NoDUMP stereotypes are assumed.

19

Foundation

Database Application Presentation Security Topology

Figure 5: The components of the NoDUMP Profile

4.2 Subsystem Decomposition

The Standard elements are defined within a single package called NoDUMP-
Profile. The specification of the NoDUMPProfile package defines stereo-
types to model Notes related applications. Because of its size, the whole
profile is divided into single components, each to model different aspects
of an application.

Figure 5 shows all components of the NoDUMP Profile.

Foundation: Abstract stereotypes used by other components.

Database: Stereotypes used to model the database functionalities of Notes.

Application: Stereotypes used to model business logic realized with Notes.

Presentation: Stereotypes used to model (web) user interfaces driven by
Notes.

Security: Stereotypes used to model security aspects of Notes.

Topology: Stereotypes used to model topology issues (like deployment of
databases over several servers) of Notes.

20

5 The NoDUMP Specification

This section gives a short overview over the NoDUMP specification which
has been developed during this project. The specification consists of the
following main sections:

1. Motivation: Describes the motivation, the problem statement, and the
scenario.

2. Approach and Structure: Gives explanatory notes on extending UML,
the design goals, and the structure of the whole specification.

3. Lotus Notes Architectural Model: An introduction to the conceptual
model of Lotus Notes.

4. The NoDUMP Profile: Specifies the stereotypes, tagged values, and con-
straints for the NoDUMP Profile. This section is divided into the fol-
lowing subsections:

Profile Specification Overview: Provides UML related context infor-
mation of the NoDUMP Profile and specifies the applied naming
conventions.

Subsystem Decomposition: Gives an overview over the whole pro-
file which is logically divided into several components.

Component Specifications: Specifies all stereotypes of each compo-
nent in detail.

5. Translation of NoDUMP Models: Describes the most important rules
for translating NoDUMP compliant models into Notes database appli-
cations. The rules are given in a graphical notation using the profile
as well as instances of Notes objects introduced in section 3.

6. NoDUMP Development Process: The integration of NoDUMP into state-
of-the-art UML-based development processes is described in this sec-
tion. As a representative process the Rational Unified Process (RUP)
is used.

21

To support the expected usage of the specification as a reference book,
each subsection explaining a single component of the profile is organized
similarly. Each component description consists of:

an Introduction: Each component is introduced giving a short description.

a Diagram: A UML diagram visualizes the abstract syntax of each compo-
nent (i.e. the classes and their relationships) together with some of
the constraints (multiplicity and types). These diagrams use stereo-
types defined by [UML2Infra] for extending UML.

the Stereotype Descriptions: All stereotypes are listed in alphabetical or-
der. A short description for each stereotype explains its semantic and
additional constraints.

the Data Type Descriptions: All data types which are defined in a compo-
nent are explained in detail.

some Examples: One or more graphical examples show possible usages of
a component.

The specification of the NoDUMP UML Profile reuses some chapters of this
paper, even though they are presented in a different order to adhere to a
common specification style (similar to [CORBA UML Profile]).

22

6 Case Studies

To evaluate NoDUMP and to provide further examples, two Notes databases
have been realized: The Design Database as a library that defines de-
sign and user interface elements which can be used for other applications.
iTrack on the other hand is an application similar to a bulletin-board which
uses an issue model proposed by [Dutoit 2002] and furthermore demon-
strates the usage of the Design Database. In the following, short outlines
of the development documents are given.

6.1 Design Database

6.1.1 Problem Statement

Most Notes based applications which are used within a single company de-
fine their own user interfaces. This often causes a nonuniform look and
feel of the single applications over the time and aggravates maintainability.
To keep a consistent corporate identity, speed up application development,
and support design changes in the future a single library which encapsu-
lates the look and feel of Notes applications should be developed.

6.1.2 Analysis

Each element of an application’s user interface can be assigned to one of
the following three scopes:

Corporate Identity Common elements which support navigation within
the company’s web page and define the basic look and feel of all
applications (see figure 6).

Application Identity Elements which are direct parts of the developed ap-
plication. These include elements for navigation within the appli-
cation, using the application as well as defining application related
design, like for example an application logo (see figure 7).

Instance Identity Elements which can be used to customize the appear-
ance of an application when instantiated for a project (see figure 8).

23

Figure 6: Corporate Design Elements

Figure 7: Application Design Elements

24

Figure 8: Project Instance Design Elements

Depending on the scope a design element belongs to, the frequency as well
as the responsibility for creating or changing the element usually differs.

Scope Responsibility Frequency
Corporate Identity Management rarely
Application Identity Developers usually once for each application
Instance Identity Administrator usually once for each instance

6.1.3 Top Level Design

Figure 9 shows a draft of the components and their interfaces for the design
database.

25

Figure 9: Draft of Design Database Components

26

«notesForm»
BasicForm

«notesForm»
$$ViewTemplateDefault

-coachMail
-coachName
-projectName
-projectHome
-projectLogo
-projectNavigation

«notesSettings»
ProjectSettings

«notesAgent»
HandleUnreadMarks

+edit()
+delete()

«notesForm»
FormActionPanel

+submit()
+cancel()

«notesForm»
FormSubmitPanel

+markForDeletion()
+deleteSelected()

«notesForm»
ViewActionPanel

«sharedField» -developerName
«sharedField» -developerEMail

«notesForm»
Footer«notesForm»

Header
«notesForm»

CompanyNavigation

+previousDocument()
+nextDocument()

«notesForm»
FormNavigationPanel

+firstPage()
+lastPage()
+nextPage()
+previousPage()
+expand()
+collapse()

«notesForm»
ViewNavigationPanel

«notesForm»
ToolCreationActionPanel

«notesForm»
ToolFormActionPanel

«notesForm»
ToolViewActionPanel

«notesForm»
StatusPanel

«notesForm»
ToolNavigationPanel

«sharedField» -toolName
«sharedField» -toolLogo

«notesSection»
ToolInfoPanel1«includes»

-title

Window

«runs»

+search()

«notesForm»
ActionPanel

«notesSection»
ProjectInfoPanel

1

«includes»
11

«includes»

1

«includes»

1

«includes»

1

«includes»

1

«includes»

1

«includes»

1

«includes»

1«includes»

1

«includes»

1«includes»
1

«includes»
1

«includes»

Figure 10: Detailed Design of the Design Database

6.1.4 Detailed Design

Figure 10 shows the detailed object design of the design database using the
NoDUMP UML extension.

The Window defines the basic arrangement for all rectangular sections of
the page. It includes the Header containing the CompanyNavigation, the
Footer, a ToolInfoPanel for displaying the application’s name and icon, an
application related StatusPanel, and the ProjectInfoPanel which presents
customizable information for single instances of the database.

The BasicForm will be used by applications as the basis for single Notes
forms. It includes standard panels for common user tasks like navigating to
the previous or next document, editing or deleting the document, and sub-

27

mitting or cancelling changes. The FormActionPanel can be customized
by application developers to provide control elements for creating new
application specific document types (ToolCreationActionPanel), navigate
within the application (ToolNavigationPanel), and to provide further func-
tionalities within a form like sending an email (ToolFormActionPanel).

The $$ViewTemplateDefault defines the default layout for presenting Notes
views. Analogical to the BasicForm, the $$ViewTemplateDefault includes
panels for presenting certain user menus.

6.1.5 Implementation

The detailed model of the design database has been transformed into a
Notes database template by applying the rules described in ??. Due to the
lack of an automated generator the translation has been done manually.

The resulting template is located in a Notes database template called ”libs/
design.nsf”. To gain further flexibility, the abstract class ”Window” has been
broken up by directly adding its functionality to the child classes ”Basic-
Form” and ”$$ViewTemplateDefault”. So the overall layout of Notes views
and Notes forms could be made completely different in future, if needed.

An application can inherit the design of the ”libs.design” database and cus-
tomize tool related elements. The customization is done by overwriting the
application related Notes shared fields for applying information like ”Ap-
plicationName” and ”ApplicationLogo” and by overwriting the application
related subforms to provide functionalities like navigation within the ap-
plication and status information about the application. Additionally a tool
can directly use common features like support of unread marks for all types
of documents without any additional work.

An example for a resulting application layout can be seen in the iTrack
screenshots (figure 14).

28

6.2 iTrack

6.2.1 Problem Statement

Project related communication is often realized using multiple applications.
For example, bulletin boards, meeting planner and bug tracker come into
operation. In order to simplify finding relevant information and to gain
synergy effects through combined information it would be desirable to have
one application which allows to manage all of the named tasks.

6.2.2 Analysis

Common communication tasks during the life time of a project are discus-
sion of general topics, organization of meetings, documentation of meeting
minutes, announcement of news for project members and tracking bugs
and other issues.

Therefore, a bulletin board like application which allows different types
of postings, supports searching information, automates email notification
of project members and enables users to link different posts together is
assumed as an ideal type of application to solve these communication tasks.

6.2.3 Top Level Design

The issue model proposed by [Dutoit 2002] defines an abstract object model
for issue based software development. An excerpt of this model is shown
in figure 11.

An Issue is the base class for all objects which realize a certain issue type,
like for example ”question”, ”problem” or other topics of interest. Every
Issue can be supplemented by Comments so users can discuss about it.
Possible solutions can be added to one or more issues as Proposals. Each
Proposal is evaluated against several Criteria using Assessments. If the
developers decide for a solution, an Issue can be closed by associating
Resolutions with it which refer to former proposals.

Due to its flexibility, this model is used as the basis for the iTrack application
which will be realized as a Notes database application.

29

-status
-category
-severity

Issue

Proposal

*

Criterion Resolution

**

-subIssues

*

Comment

-assessment

Assessment

* *

* *

*

Figure 11: The Issue Model

30

-subject
-body
«computed» -author
«computed» -lastEditor
«computed» -creationDate

«notesDocument»
Node

-status
-severity

«notesDocument»
Issue

-meetingDate
-meetingAgenda
-participants

«notesDocument»
Agenda

-actionItems

«notesDocument»
Minutes

«notesDocument»
Topic

«notesDocument»
Comment

«notesDocument»
Proposal

«notesDocument»
Criterion

-assessment

«notesDocument»
Assessment

-status

«notesDocument»
Resolution

-seeAlso*

-parentIssue

1

-subIssues*

-parentNode

1
-comments

*

1

-proposals

*
1
-criteria

*

-resolutions

*

*

*

1

-uid

«notesDocumentCollection»
AllNodesByUID

«collects»

«collects»

«category» -nodeID

«notesDocumentCollection»
CommentsByNode

Figure 12: The apps.itrack.model package

6.2.4 Detailed Design

The whole iTrack application is located in the package apps.itrack. Within
apps.itrack, the package apps.itrack.model (see figure 12) defines the
model elements according to the issue model while the user interface is
packed in apps.itrack.view (see figure 13).

The original issue model shown in figure 11 has been simplified by ex-
changing the many-to-many associations with one-to-many compositions
(see figure 12). This step was necessary because it is not possible to create
a usable HTML-user-interface for handling these complex circular relation-
ships. Furthermore, a one-to-many composition can be directly realized
using a special Notes construct called ”response documents” which simpli-
fies implementation.

Because iTrack should support additional types of postings, like meeting
agendas and meeting minutes, a super class Node has been added. A Node
contains a subject and a body and automatically computes the author on

31

«computedField» -author
«computedField» -lastModifier
«computedField» -creationDate

«notesForm»
PersonInformationPanel

«notesForm»
CommentsListPanel

«notesForm»
SeeAlsoListPanel

«notesView»
OpenIssuesView

«notesView»
ClosedIssuesView

«notesView»
MyIssuesView

+validateData()
+presentErrors()

«notesAgent»
FormFeedbackController

«action» +writeResolution()
«action» +writeProposal()

«notesForm»
IssueForm

«notesForm»
NodeForm

«category» -nodeID

«notesDocumentCollection»
apps.itrack.model:: CommentsByNode

«uses»

-uid

«notesDocumentCollection»
apps.itrack.model:: AllNodesByUID

«notesView»
IssuesView«collects»

-status
-severity

«notesDocument»
apps.itrack.model:: Issue

-parentIssue 1

-subIssues

*

«uses»

«includes»

«includes»

«includes»

«notesForm»
libs.design::BasicForm

«notesForm»
libs.design:: $$ViewTemplateDefault

«processes»

-status
-severity
-subject
-body

«notesForm»
IssueContent

-statusKinds
-severityKinds

«notesSettings»
iTrackSettings

«uses»

«includes»

«defines»

-subject
-body
«computed» -author
«computed» -lastEditor
«computed» -creationDate

«notesDocument»
apps.itrack.model:: Node

«runs»

1

-seeAlso

*

Figure 13: Excerpt of the apps.itrack.view package

creation and the lastModifier when a Node is edited. For each Node,
seeAlso references to other Nodes can be given. Additionally, Comments
can be attached to every Node. Because a Comment is also a Node, Com-
ments can be commented, too.

Figure 13 shows an excerpt of the user interface model. An abstract Node-
Form class defines the layout for presenting attributes of a Node. Further-
more, every Node runs the FormFeedbackController before saving which
validates the data and gives detailed feedback to the user when data is
missing or invalid. NodeForm extends BasicForm from the libs.design
template database described in section 6.1. For each concrete class of the
apps.itrack.model package at least one NotesForm stereotyped class de-
fines the individual layout. Figure 13 shows the IssueForm used for creat-
ing and presenting apps.itrack.model.Issue objects.

In a similar way, several NotesViews are modeled. These views present
existing documents to the user in different ways like showing all unresolved
issues or showing issues categorized by subject or author.

32

Figure 14: Screenshots of the iTrack application

33

6.2.5 Implementation

The detailed model of the iTrack application has been transformed into a
Notes database template by applying the rules described in ??. Due to the
lack of an automated generator the translation has been done manually.

Both packages are implemented in corresponding Notes template databases
called apps/itrack/model.nsf and apps/itrack/view.nsf. A third Notes
template database apps/itrack/main.nsf inherits all design documents of
the other two databases and is the template which can be used to instanti-
ate iTrack for single projects.

apps/itrack/model.nsf holds all Notes forms and Notes subforms which
define the data object model of iTrack. Within all forms each field is
amended by a standard ”Input Validation” formula checking for type cor-
rectness and multiplicity of values.

apps/itrack/view.nsf realizes the graphical user interface for iTrack. Ob-
ject references of the model are usually realized by ”Comboboxes” or ”List-
boxes” which allow the user to select one or more objects of a certain type
to be included within the reference. Forms which can be used to create new
objects include a ”computed when composed” field called ”form” with the
fully qualified object name of the corresponding model object as a constant
value.

All GUI elements inherit their design from the libs.design database where
all application related subforms and shared fields were overwritten as de-
scribed in section 6.1.

The reusable FormFeedbackConrtoller controller calls the Notes ”com-
puteWithForm” operation which evaluates the document according to the
”Input Validation” formulas of the model. All errors while validating the
fields are stored within a hidden field ”exceptions”. If this field is not empty
after validation the controller prohibits saving the document and displays
it again using the former presentation form. Additionally, error messages
are provided next to the invalid fields to enable the user to correct wrong
or missing data.

Some screenshots of iTrack are shown in figure 14

34

6.3 Requirements Evaluation

With regard to the requirements (see 2.4) this section describes the lessons
learned during the work on the case studies.

6.3.1 Fulfilled Requirements

MVC Paradigm: The MVC paradigm had a strong influence on the devel-
opment of NoDUMP . Due to the design of the Database, Applica-
tion, and Presentation components, each part can be modeled sep-
arately, even by different developer teams. By using reusable con-
troller agents which automate validation of user inputs and give help-
ful user feedback (e.g., the ”FormFeedbackController” used in iTrack),
the quality of the user interface can be increased without any effort.

Fit into Common UML Processes: The issue model used for the iTrack
case study was treated as the application domain model which re-
sulted from an analysis phase within a common software develop-
ment process. This standard UML model was refined constantly using
NoDUMP while Notes database skeletons were generated (manually)
from the different states of the model. At all time, the NoDUMP
model functioned as a basis for discussions and reviews with other
developers. NoDUMP fitted seamlessly into this RUP-like process.

6.3.2 Partly Fulfilled Requirements

Default Meanings and Values: Default stereotypes and, even more impor-
tant, default values for tagged values allow to leave out a lot of in-
formation and therefore help cleaning up the diagrams. But complex
diagrams still become difficult to survey. Specifying alternate graphi-
cal notations for stereotypes could help improving readability.

UML 2.0 Compliance: NoDUMP is compliant to UML 2.0 as far as the au-
thor can tell. But for a complete specification, additional work on the
single stereotypes has to be done. Well -formedness rules as well as
detailed semantics have to be specified more carefully, possibly using
OCL (Object Constraints Language).

Focus on UML Users: It showed, that users who are used to reading UML
diagrams have no problem with understanding NoDUMP models. But

35

if diagrams become more complex the users need at least a basic un-
derstanding of how Notes works, especially when a lot of ¿notes-
DocumentCollectionÀstereotypes are used. The latter problem could
be solved by modeling NotesDocumentCollections as operations of
NotesDocuments, similar to the ”Home” interfaces used by Enter-
prise Java Beans.

6.3.3 Unjudged Requirements

Server Topologies: No server topology was modeled during the case stud-
ies.

Code Generation: For the case studies, the code was generated manually
using the translation rules described in ??. Basically it should be pos-
sible to develop a generation tool, but additional work on the trans-
lation rules has to be done before.

Support Notes Integration: During the case studies no external systems
were used.

Support Design Patterns: During the work on the case studies, certain
constructs appeared several times. These constructs are good can-
didates for becoming patterns in the future. But because no special
work for finding patterns was done, this requirement could not be
judged.

Additionally, some Notes related issues showed up which affect the usage
of NoDUMP . On the one hand, the length of Notes DesignDocument names
can only be up to 32 (64 in Notes views) characters and varies depending
on the type of DesignDocument. Developers should pay attention to this re-
striction when a lot of hierarchical packages are used. On the other hand,
the Notes formulas ”@GetDocField” or ”@DBLookup” which are used for
following relationships between Notes documents can not be used within
Notes view columns. This makes it hard to implement a scenario like this:
”A view presents all cars (a NotesDocument) and additionally displays the
name of the owner for each car (another associated NotesDocument)”. This
issue could be solved by caching the name of the owner in the ”Car” docu-
ment, but then the value may not be up-to-date. Currently, there is no real
solution for this problem.

36

7 Future Work

• Add a “behavior component” for modeling behavioral issues. Exam-
ples could be to model states of documents as state machines or to
model user interactions across several forms as activity diagrams

• Complete and refine translation rules described in ??.

• Develop a NoDUMP model validation tool which takes UML diagrams
in XMI file format (XML Metadata Interchange) and validates it against
the NoDUMP well-formedness rules.

• Develop a code generator which takes NoDUMP compliant UML di-
agrams in XMI file format and transforms it into Lotus Domino XML
format according to ??.

• Develop a refactoring tool which takes Lotus Domino XML files and
transforms them into NoDUMP compliant UML models.

• Integrate NoDUMP into state-of-the-art development platforms, like
for example JBuilder or Eclipse.

37

Appendices

A Extending UML

“Currently, there is no normative definition of a UML profile. However, the
Business Object Initiative RFPs elucidated the following working definition
of a UML profile.

A UML profile is a specification that does one or more of the following:

• Identifies a subset of the UML metamodel (which may be the entire
UML metamodel).

• Specifies well-formedness rules beyond those specified by the identi-
fied subset of the UML metamodel. Well-formedness rule is a term
used in the normative UML metamodel specification (ad/99-06-08)
to describe a set of constraints written in natural language or UMLs
Object Constraint Language (OCL) that contributes to the definition
of a metamodel element.

• Specifies standard elements beyond those specified by the identified
subset of the UML metamodel. Standard element is a term used in
the UML metamodel specification to describe a standard instance of
a UML stereotype, tagged value, or constraint.

• Specifies semantics, expressed in natural language, beyond those spec-
ified by the identified subset of the UML metamodel.

• Specifies common model elements; that is, instances of UML con-
structs expressed in terms of the profile.”

(from [CORBA UML Profile])

UML provides a “lightweight” extension mechanism which is supported by
some UML tools. UML can be extended through:

38

Stereotypes The stereotype concept provides a way of classifying (mark-
ing) elements so that they behave in some respects as if they were
instances of new “virtual” metamodel constructs. With a “stereotype”
an existing UML model element can be subclassed.

Tagged values Tagged values are values which can be added to UML di-
agrams for modeling detailed information. Tagged values can be
bound to a stereotype or be general. A tagged value is written as
¿tagnameÀ .

Constraints Constraints can be added to stereotype definitions. Constraints
define the context in which the “new” (stereotyped) UML Model el-
ement can be used. For example, a constraint can tell that a stereo-
type ¿usesÀwhich extends the UML element “Association” must al-
ways have a ¿personÀ(which extends “Class”) on its association start.
While a standard association can be added between any classes, this is
not true for an ¿usesÀ-association, because only a ¿personÀcan use
something (in this example!). Constraints may be specified in OCL
(object constraints language) or in natural language.

The definition of a stereotype uses the same notation as a class but it is
stereotyped ¿stereotypeÀ. The first letter of an applied stereotype should
not be capitalized. For example: a stereotype “Database” is notated as
¿databaseÀ.

39

B

List of Figures

1 The Use Case Model . 12

2 Integration of NoDUMP into RUP 15

3 Lotus Notes Architectural Model 16

4 Lotus Notes Design Documents Model 18

5 The components of the NoDUMP Profile 20

6 Corporate Design Elements 24

7 Application Design Elements 24

8 Project Instance Design Elements 25

9 Draft of Design Database Components 26

10 Detailed Design of the Design Database 27

11 The Issue Model . 30

12 The apps.itrack.model package 31

13 Excerpt of the apps.itrack.view package 32

14 Screenshots of the iTrack application 33

40

C

References

[RUP] The Rational Unified Process: An Introduction, Addison Wesley Long-
man, 1999

[OOSE] Bernd Brügge, Allen H. Dutoit, Object-Oriented Software Engineer-
ing, Prentice Hall, New Jersey, USA, 2003.

[NotesUnleashed] Steve Kern, Deborah Lynd, Lotus Notes and Domino 5
Development Unleashed, SAMS, 1999.

[NotesBestPractice] Lotus Notes & Domino - Best Practices Guide, Lotus De-
velopment Corp., http://www.lotus.com/bpg (as Notes Helpfile)

[Ives1999] Teamstudio DesignSystem, Software Engineering with Lotus
Notes and Domino, Ives Development Inc., White Paper, Edition 2, 1999,
http://www.teamstudio.com

[MOF2003] Object Management Group, Meta Object Facility Specification,
http://www.omg.org/cgi-bin/apps/doc?formal/02-04-03.pdf

[UML1.0] Object Management Group, OMG Unified Modeling Lan-
guage Specification, http://www.omg.org/cgi-bin/apps/doc?formal/03-
03-01.pdf

[UML2Infra] Object Management Group, UML 2.0 Infrastructure Specifica-
tion, http://www.omg.org/cgi-bin/apps/doc?ptc/03-09-15.pdf

[UML2Super] Object Management Group, UML 2.0 Superstructure Specifi-
cation, http://www.omg.org/cgi-bin/apps/doc?ptc/03-08-02.pdf

[Lotus Notes Webportal] IBM, Lotus, Lotus Notes Webportal and Foras,
http://www.notes.net

[Dutoit 2002] S.K. Chang, Allen H. Dutoit, Barbara Paech, Handbook of
Software Engineering and Knowledge Engineering Chapter ”Rationale
Management In Software Engineering”, World Scientific

[CORBA UML Profile] Object Management Group, UML
Profile for CORBA Specification (based on UML 1.0),
http://www.omg.org/docs/formal/02-04-01.pdf

41

[TestingProfile] Object Management Group, UML Profile for Testing Frame-
works (based on UML 2.0), http://www.omg.org/docs/ptc/03-08-03.pdf

42

