Diagram Editor for Tablet PC

Term project for Brainchild

PROJECT REPORT
Project period: July 2006 — November 2006
Student name: Ruihua Jin
Status: 8-th Semester
Email address: rjiin@student.ethz.ch

Supervisor name: Christoph Angerer

Introduction

With traditional diagram editors the user must first select the type of the shape he wants to draw,
and then use the mouse to draw the shape, and each time before the user performs some operation
on a certain shape, he must select the corresponding menu item. This approach does not take
advantage of a Tablet PC with which one can draw strokes on the screen asif one were drawing on
a piece of paper. Tablet PC promises more comfort in freehand drawing, and at the same time, a
Tablet PC also offers the possibility to perform operations on strokes or shapes like a common
computer, which a piece of paper is not able to do.

Using ink recognition technique the user overcomes the shortcomings of freehand drawing where
straight lines and regular geometrical shapes are almost impossible to draw; and using gesture
recognition technique the user can call acommand ssimply by drawing some stroke without having
to search for certain menu items to get the command performed. Tablet PC is therefore an ideal
presentation tool for meetings, lectures, etc.

The current project is one approach taken to offer the user a comfortable way to draw free strokes,
geometrical shapes and write texts; Furthermore, it also offers several gestures for the commands
which are commonly used in adiagram editor.

Overview

The goal of this project is to develop a diagram editor for Tablet PC which allows the user to use
the pen to draw diagrams.

Scope of the work

Using this diagram editor the user can draw arbitrary figures, regular geometrical shapes and write
texts. Corresponding to these three functions there are three drawing modes supported: freehand
style, that is, what you draw is what you see, no ink recognition will be involved, and
non-freehand style, that is, the figure drawn by the user will be first classified as a regular
geometrical shape, e.g. aline, an arrow, arectangle, etc., then the corresponding geometrical shape
will be output on the screen, i.e.:

The user draws l k The program outputs

at the same location. Freehand style is the default drawing mode. The user can switch between
these three modes by clicking the corresponding button in the pie-menu:

» Non-freehand drawing mode

v

Freehand drawing mode

Text mode

v

Figure 1. Pie-menu for selecting drawing modes.

The current project concerns only the non-freehand drawing mode and the text mode.

In non-freehand drawing mode the user can draw basic geometrical shapes which are drawn with
only one stroke, complex geometrical shapes which are drawn with more than one strokes one
after another, and flow graphs in which only a restricted number of shapes can be drawn. When
non-freehand drawing mode is activated, the following pie-menu pops up in the GUI, where
“Basic” isthe default (flow graph mode is not implemented in the current project):

— Complex shape mode

"| — Basic shape mode

— Flow graph mode

Figure 2. Pie-menu when non-freehand drawing mode is activated.

When the text mode is activated, four circular controls will be shown at the bottom of the screen,
the user can then write letters, numbers or punctuations one by one in theses controls, they will
then be recognized and output in the wanted text area.

|. Basic shape mode: Recognizing and constructing basic geometrical shapes

With basic geometrical shapes the author means the geometrical shapes which can be drawn with a
single stroke. Following shapes are supported as basic geometrical shapes:

OO

Rectangle Square Ellipse Circle
Triangle Parallelogram Rhombus Horizontal line

Figure 3. Supported basic geometrical shapesin basic shape mode.

The recognition is based on Rubine's Recognizer, which requires one to follow certain rules while
drawing shapes. To it, which end one starts at and the direction one draws in are important. For
example, the recognizer would treat a "1" drawn top-to-bottom and a "1" drawn bottom-to-top
differently. Here, shapes are aways drawn starting at the dot and it is also important that the user
draws shapes in the correct direction:

OO0

Rectangle Square Ellipse Circle

N T

Triangle Parallelogram Rhombus Horizontal line

Figure 4. Ways to draw basic geometrical shapes.
The dot signifies where one starts drawing, the
arrow signifies the direction in which one draws.

Arrows are also supported as basic geometrical shapes:

Line with single solid arrowhead Line with single open arrowhead

Figure 5. Supported arrow shapes in basic shape mode.

where each shape should be drawn as the following:

= >

Line with single solid arrowhead Line with single open arrowhead

Figure 6. Rule to draw arrow shapesin Figure 5.

The drawbacks of using Rubine's recognizer to recognize basic geometrical shapes are the
following:

The user must follow predefined ways to draw shapes.

The shapes cannot always be recognized correctly. Sometimes the recognizer returns no result,
since the probabilities of al the classifications are under the threshold (default is 0.8); and
sometimes the shape is misclassified, i.e. elipses are often classified as parallelograms.
Reason: the user cannot always draw shapes perfectly and the recognizer is not able to classify
shapes with 100% certainty aslong asit only refersto a small number of gesturesit get feeded
previoudly.

In order to enable the recognizer to recognize shapes in arbitrary size and in arbitrary direction,
one should offer the recognizer afile which contains the corresponding shapesin arbitrary size
and in arbitrary direction, which is a tedious work and may even lead to worse classification
results. So in basic shape mode which uses Rubine’s recognizer the author only takes care of
the “horizontal” geometrical shapes, if the user wants to draw geometrical shapes in arbitrary
size and in arbitrary direction, then he should switch to the complex shape mode which is
considered to overcome these shortcomings of a recognizer.

If none of the above shapes can be recognized, then the program assumes that the user wants to
draw a line, and a line is drawn from the start point to the end point of the stroke, under the
condition that the distance between the start point and the end point is larger than 20 pixels,
otherwise nothing is drawn. In this way, lines of arbitrary length and in arbitrary direction are
supported in basic shape mode.

Since arrows are similar to lines, one only needs to give a small hint to the program to get an
arrow of the length and in the direction one wants. First the user draws a line of the intended
length and in the intended direction, then he draws one of the following gestures, using right
mouse button, on the line:

Figure 7. Ways to change aline into an arrow.
The dot signifies where one starts drawing.

Theresults are

> < < >
> < +t—>

Figure 8. Outputs after drawing gestures shown in Figure 7 on lines.

In sum, in basic shape mode one can draw rectangles, squares, triangles, parallelograms and
rhombuses, one can also draw ellipses and circles, however, the sizes of these shapes should not be
too large and should also not be too small, and the direction must be horizontal. On the other hand,
lines and arrows can be of arbitrary length and in arbitrary direction.

To draw rectangles, squares, triangles, parallelograms and rhombuses of arbitrary size and in
arbitrary direction one should switch to complex shape mode.

I1. Complex shape mode: Recognizing and constructing complex geometrical shapes

With complex geometrical shapes the author means the geometrical shapes which are drawn with
more than one strokes one after another.

To start drawing a complex geometrical shape, the user first activates the complex shape mode,
then he draws a stroke along the left side of the screen, using the right mouse button (the program
regards any stroke whose x-coordinate of the start point is less than 15 pixel as asignal to start or
finish drawing complex shapes), then the text “drawing” shows up to tell the user that he can begin
to draw the shape. In the following phase, each stroke drawn by the user is straightened:

L
(]
X]

g A~ 9] /

..........

%,

Figure 9. Screen output when a complex shape is being drawn.

When the user finishes drawing the shape, he draws again a stroke along the | eft side of the screen,
using the right mouse button. Right after that the program begins to process the strokes and triesits
best to classify the geometrical shape.

L&

X]

g A~ 9]

..........

%,

Figure 10. Screen output after the program processes the strokes drawn.
In this example, the program classifies the shape as a parallelogram.

During processing the program performs following steps:

1. Start with thefirst stroke.

2. Mergethefirst stroke with the second stroke, the second with the third stroke, and so on, until

the last stroke.

3. The shape is checked for closedness. The shape is considered as closed if the strokes are
drawn either in clockwise order or in counterclockwise order, and the intersection point of the
last stroke and the first stroke is contained in the bound of the last stroke or in the bound of the
first stroke.

1)
2)

If the shape is not closed, then it is drawn as an open path, the processing stops here.

If the shape is closed, then the last stroke is merged with the first stroke, and the
shape is a closed path. If the number of the strokes is four, then the program checks
whether it is a sguare, a rectangle, a rhombus or a parallelogram, applying the
following criteria:

2.1)

2.2)

2.3)

2.4)

If the three internal angles are between 70° and 110°, and the differences
between the strokes' lengths are less than 25 pixels, then the shapeis a square;

If the three internal angles are between 70° and 110°, then the shape is a
rectangle;

If the sum of two neighbouring internal angles is between 160° and 200°, and
the differences between the strokes lengths are less than 25 pixels, then the
shape is arhombus;

If the sum of two neighbouring internal angles is between 160° and 200°, then
the shape is a parallelogram.

Below are two examples of how to draw arectangle and a parallelogram in complex shape mode:

®

[11. Text mode

Figure 11. Examples of drawing arectangle and a parallelogram.
The dot signifies the starting point of a stroke, the numbers signify
the order in which the strokes are drawn.

In text mode, the user first draws a rectangle to specify a text area, using the left mouse button.
Then the activated text areais highlighted with a yellow background.

Original

Original

g A—A—A—i- 3]

This text area has been activated,
it 1s the current one.

Figure 12. Diagram editor in text mode, with two text areas drawn.

To write letters, numbers or punctuations, the user draws the charactersin the four circular controls
shown in Figure 12. The one labeled with “a” is for small letters from ‘& to ‘Z', the one labeled

with “A” isfor big letters from ‘A’ to ‘Z’, the one labeled with “2” is for numbers from ‘0’ to ‘9’
and the one labeled with “8” isfor punctuations.

In order that the recognizer is able to recognize the characters, the user should follow the following
drawing rules:

abca‘le(‘ghi

alA oG hH il

J<Im1\oT°‘)‘r

n/N o0 p/P d9Q IR

sg-oLwX)wz

wu viV. wW xIX ylIY ZZ

Figure 13. Drawing rule for letters. Heavy dot indicates starting point.

O123 4 56

7 3¢

Figure 14. Drawing rule for numbers. Heavy dot indicates starting point.

- - /7 O 231 7N

2] % @ 4 8 u
nz A SN <>
CJ1{%}GC D/
N L oz

Figure 15. Drawing rule for punctuations. Heavy dot indicates starting point.

To activate a text area, the user left-clicks in the text area, right after that the text area is
highlighted with a yellow background, and the following characters will be output in this text area.
To deactivate all the text areas, the user just |eft-clicks outside the text areas.

I'V. Context-awar e drawing

For the current project, the context-aware drawing only applies to arrows. When an arrow is drawn,
the program first searches for the two shapes which contain the arrow ends, and then draws an
arrow between these two shapes.

When one of the connected shape is transformed, i.e. moved, resized or rotated, the arrow
connected with it will be updated, that is, its position, its length and its angle will be corrected,
right after the transformation.

V. Selecting and operating on graphical elements

To select a single graphical element or several graphical elements one draws a circle around the
element(s) he wants to select, using the right mouse button, only the elements whose bounds are
entirely in the bound of the selection circle are selected. After selection the transparency of the
elements’ color is set to 0.5 to distinguish the selected ones from the unsel ected ones.

v L

Figure 16. How to select graphical elements. Figure 17. Screen output after selection.
After selection one can do operations on all these selected elements together. The operations can

be selected from a pie-menu, which pops up when the user presses the right mouse button on an
arbitrary place and holds it down for several milliseconds (default is 200 ms).

«
Group Modify
Ungroup y

Figure 18. Pie-menu for operations.

Following operations are supported:

e Grouping selected graphical elements:. If there are more than one graphica elements selected,
this operation groups the selected graphical elements into a single one. The user clicks
“Group” in the pie-menu shown in Figure 18 or draws the following gesture, using the right
mouse button, to get this operation performed:

Figure 19. Gesture for group operation. The heavy dot indicates the starting point.

Ungrouping selected graphical element: If there is only one graphical element selected and the
element is the result of a previous group operation, then the subelements in this element
become individual ones. The user clicks “Ungroup” in the pie-menu shown in Figure 18 or
draw the following gesture, using the right mouse button, to get this operation performed.

>,

Figure 20. Gesture for ungroup operation. The heavy dot indicates the starting point.

Moving selected graphical element(s). To move the selected graphical element(s), the user
clicks the right mouse button inside the selection area and holds it down, then drags it to the
wanted place.

Resizing and rotating selected graphical element(s). Whether a resize or a rotate operation is
performed depends on where the user right-clicks the mouse button, s. Figure 21.

To start the resize operation, the user first right-clicks in the corresponding area, then within
500ms, the user draws a stroke using right mouse button inside this area, he should keep
drawing until the wanted size is reached.

To start the resize operation, the user first right-clicks in the corresponding area, then within
500ms, the user draws a stroke using right mouse button inside this area, he should keep
drawing until the wanted angle is reached.

Counterclockwise Make the shape Counterclockwise
rotation l Smaller (vertical) | rotation
Make the shape | g I En arge the shape
Smaller (horizontal) I I (horizontal)

— —— _— —_— _— —_— ﬁ ——————— -ﬂ —_— _— —_— _— —_— _—
Clockwise I Enlarge the shape I Clockwise
rotation (vertical) rotation

Figure 21. Different resize and rotate operations are assigned different areas to.

e Modifying selected graphical elements appearance: make solid lines dashed, make dashed
lines solid, choose another color for the elements, fill the elements with a certain color, change
the line width. To perform the operation, one first selects the foreground color, background
color, or line width, if necessary, in the corresponding controls, then clicks “Modify” in the
pie-menu shown in Figure 18, right after that a child pie-menu pops up:

Figure 22. A child pie-menu for setting style of the selected graphical element(s).

o Cutting, copying, pasting, deleting selected graphical element(s). To perform these operations,
the user clicks “Edit” in the pie-menu shown in Figure 18, right after that a child pie-menu
pops up:

Figure 23. A child pie-menu for cutting, copying, pasting, deleting selected graphical element(s).

The operations Cut, Copy, Paste and Delete can also be called by drawing the following
gestures on the screen:

X C V

Copy Paste Delete
Figure 24. Gestures for cutting, copying, pasting, deleting selected graphical element(s).

To deselect the graphical element(s), the user draws again a circle around the graphical element(s)
he wants to deselect, using the right mouse button.

Design Issues

|. Diagram items

All free strokes, geometrical shapes, text areas are instances of Diagramltem, it is an abstract
class, and it inherits AbstractPropertyChangeSource. Properties of a diagram item are
HAS BEEN_ REMOVED, LOCATION_PROPERTY, SIZE PROPERTY and STYLE PROPERTY.
Each diagram item has a unique identification number and a GOBWrapper object for its
compatibility with SATIN’'sGraphicalObject.

AbstractPropertyChangeSource

ﬂk ﬂk

<< GraphicalObject >>
Diagramltem * A

<< GraphicalObjectGroup >>
—

______ p| << PropertyChangeSource >>

GOBWrapper
—— > inherits ——=> “has a’relationship ______ » implements
* abstract class << interface >>

Figure 25. Diagramltem class.

Severa diagram items can be grouped into a DiagramltemGroup object.
DiagramltemGroup inherits Diagramltem, and it maintains a list of Diagramltem
instances which belong to this group, a a consequence, it implements
PropertyChangeListener and listens to the HAS_ BEEN_REMOVED property change event
of each diagram item contained in it, when a corresponding PropertyChangeEvent is fired,
the event source will be deleted from the group. Each instance of DiagramltemGroup has a
GOBGroupWrapper object for its compatibility with SATIN’s GraphicalObjectGroup
which inherits GraphicalObject. GOBGroupWrapper inherits GOBWrapper.

Diagramltem * << GraphicalObject >>
A
]
|
T |
DiagramltemGroup * << GraphicalObjectGroup >> GOBWrapper
; &
N 1
N |
| \ : /
A 4 A
<< PropertyChangeListener >> GOBGroupWrapper
—— » inherits ——>= ‘hasa’relationship ______ » implements
* abstract class << interface >>

Figure 26. DiagramltemGroup class.

Following are the classes for geometrical shapes which are created in basic shape mode, complex
shape mode and text mode, these classess ae in the package
brainchild.editor.shared. items:

Diagramltem *

P A =t

Ellipseltem Lineltem Arrowltem Pathltem Polygonltem Textltem
GobEllipse GobLine GobArrow GobPath GobPolygon
! /
Patchimpl GObJComponentWrapper
A 4

GraphicalObjectimpl *

A 4
<< GraphicalObject >>

— » inherits ——> ‘hasa’relationship ______ > implements

* abstract class << interface >>

Figure 27. Classes for geometrical shapes.

When a shape is drawn, an object of the corresponding class Xxxltem is created, the
defaultRender() method which is inherited from GraphicalObjectimpl and is
responsible for rendering the shape on the screen is implemented in the Patchlmpl resp.
GobXxx class. Concretely,

Ellipses, including circles, are objectsof E1 lipseltem.

Arrows are objects of Arrowltem.

Linesare objectsof Lineltem.

Rectangles, squares, triangles, parallelograms and rhombuses are objects of Polygonltem.

Paths which are constructed from straight lines and are not rectangles, squares, triangles,
parallelograms or rhombuses are objects of Pathltem, the user can draw paths only in
complex shape mode.

Text areas created in text mode are objects of Text1tem.

The objects of the geometrical shapes described above are all created using methods implemented
in the ShapeFactory class.

Different instances of Diagramltem can be grouped together using group operation. A group is
an instance of 1'temsGroup which isasubclass of the abstract classDiagramltemGroup:

Diagramltem *

DiagramitemGroup *
'y

ItemsGroup

—» inherits * abstract class

Figure 28. Classes for groups of Diagramltems

[1. Editor modes and their associated interpreters

In a specific editor mode one can only draw a predefined set of Diagramltems, and process a
predefined set of gestures. In the current project, following editor modes are implemented:
DiagramEditorMode, DiagramBasicEditorMode, DiagramComplexEditorMode
and TextEditorMode, where DiagramBasicEditorMode and
DiagramComplexEditorMode are submodes of DiagrameditorMode. These classes are

in the package brainchild.editor.modes:

Editor EditorMode * << Interpreter >>
‘ -

DiagramEditorMode

DiagramBasicEditorMode DiagramComplexEditorMode TextEditorMode

—» inherits —= “has a” relationship * abstract class

Figure 29. Classes for editor modes.

Each editor mode is associated with its own gesture and ink interpreters. When the user enters a
new editor mode, the interpreters associated with this editor mode are initialized. So each time
when the user draws a stroke resp. a gesture, a list of ink resp. gesture interpreters calls their
handleNewStroke(), handleUpdateStroke() and handleSingleStroke()
methods inherited from InterpreterImpl inthe order in which they are added to the list.

The classes for ink and gesture interpreters ae in the package
brainchild.editor._shared. interpreters.

BasicShapeslnklnterpreter and BasicShapesGesturelnterpreter are
associated with DiagramBasicEditorMode. Both are based on Rubinelnterpreter
which is used to classify strokes.

BasicShapesInklnterpreter recognizes different types of geometrical shapes like lines,
rectangles, squares, ellipses, circles, triangles, paralelograms, rhombuses, solid lines with a solid
arrowhead, solid lines with an open arrowhead. If the probabilities of all these classifications are
under the threshold 0.8, then the interpreter assumes that the user wanted to draw aline.

BasicShapesGesturelnterpreter recognizes gestures which are drawn to indicate arrow
types: solid line with a left resp. right solid arrowhead, solid line with a left resp. right open
arrowhead, solid line with double solid arrowheads, solid line with double open arrowheads. This
interpreter also plays arole in context-aware drawing, see below.

Interpreterimpl *

1

Rubinelnterpreter
v N

BasicShapesinkinterpreter BasicShapesGesturelnterpreter

DiagramBasicEditorMode

—» inherits —=> “has a” relationship * abstract class

Figure 30. Interpreter classes in basic shape mode.

ComplexShapesInkiInterpreter and ComplexShapesGesturelnterpreter are
associated with DiagramComplexEditorMode. Both inherit the abstract class
Interpreterimpl.

ComplexShapesGesturelnterpreter keeps track of whether the user has entered
drawing phase or not, the program is in the drawing phase when a “drawing” text can be seen on
the screen.

ComplexShapesiInkinterpreter passes free strokes to
DiagramComplexEditorMode when the program is in the drawing phase, and
DiagramComplexEditorMode stores al these strokes drawn in a certain drawing phase,
straighten these strokes to lines and output the lines on the screen. When the user has finished
drawing the complex shape, DiagramComp lexEditorMode processes these lines, trying to
classify the shape: if the shape is open, then an instance of Pathltem is created; if the shape is
closed and can be classified as square, rectangle, rhombus or parallelogram, then an instance of
Polygonltem iscreated, otherwise an instance of Pathltem is created.

Interpreterimpl *
» -«

ComplexShapesinkinterpreter ComplexShapesGesturelnterpreter

DiagramComplexEditorMode

—» inherits ————=> *has a” relationship * abstract class

Figure 31. Interpreter classes in complex shape mode.

TextBoxInterpreter is associated with TextEditorMode. It inherits the abstract class
Interpreterimpl. TextBoxInterpreter is responsible for creating instances of
Textltem and passing them to TextEditorMode. TextEditorMode stores all the
instances of Textltem present and keeps track of the current Textltem, its
appendCharacter() method is «cdled by SmallLetterslnterpreter,
BigLettersinterpreter, Numberslinterpreter and
Punctuationsinterpreter which are al subclasses of Rubinelnterpreter and are
associated with the four circular controls TextSmallLettersControl,
TextBigLettersControl, TextNumbersControl and
TextPunctuationsControl. Thelast four interpreters are used to recognize letters, numbers
and punctuations.

Interpreterimpl *

—¥
Rubinelnterpreter
/ T
TextBoxInterpreter SmallLettersiInterpreter BigLettersinterpreter
Numbersinterpreter Punctuationsinterpreter
TextEditorMode
—» inherits ——=> “has a” relationship * abstract class

Figure 32. Interpreter classesin text mode.

[11. Other interpreters

There are other four gesture interpreters which are directly associated with the instances of
DiagramSatinSheet and are therefore independent of the editor modes. They are
SelectionGesturelnterpreter, MoveSelectedInterpreter,
ResizeRotateSelectedInterpreter and EditGesturelnterpreter. The first
three are subclasses of Interpreterlmpl, and the fourth one is a subclass of
Rubinelnterpreter.

SelectionGesturelnterpreter recognizes select and deselect operations, keeps track of
selected instances of Diagramltem, it aso offers methods for grouping, ungrouping, styling,
copying, cutting, pasting and deleting selected elements which are caled by
EditGesturelnterpreter or the pie-menu of aninstance of DiagramSatinSheet.

MoveSelectedInterpreter recognizes move operations by checking whether the user
right-clicks inside the selection area and draws some stroke. If yes, then the selected elements are
moved to the wanted position.

ResizeRotateSelectedInterpreter recognizes resize and rotate operations. If a resize
resp. rotate operation is recognized, then the selected elements are resized or rotated until the user
stops drawing the gesture stroke.

EditGesturelnterpreter recognizes commands for grouping, ungrouping, copying,
cutting, pasting and deleting selected elements. If one of these operations can be recognized, then
it calls the corresponding method in SelectionGesturelnterpreter.

Interpreterimpl *

Sheet

Rubinelnterpreter

T | MoveSelectedinterpreter

DiagramSatinSheet [———__ |
— ResizeRotateSelectedInterpreter

N e =—

PopupMenu SelectionGesturelnterpreter EditGesturelnterpreter

—» inherits —=> “has a” relationship * abstract class

Figure 33. Interpreter classes associated with DiagramSatinSheet.

V. Context-aware drawing

For the subclasses of Diagramltem which are connectable by arrows they should implement the
interface ArrowConnectable, it IS in the package
brainchild.editor.shared. 1tems. Polygonltemimplements ArrowConnetable.
ArrowConnectable hastwo methods:

public Rectangle2D getBound();

public Point2D getArrowPoint(ArrowConnectable dest);

When BasicShapesGesturelnterpreter recognizes an arrow, it first searches for two
instances of ArrowConnectable each of which contains one arrowhead. If they can be found,
then the interpreter gets an arrow with the correct position, length, angle created and passes these
two instances of ArrowConnectable to the arrow object; If they cannot be found, then it gets
an arrow with the original position, length, angle created.

ArrowConnectable aso extends the interface PropertyChangeSource, and during
initialization of an arrow, the two connected shapes are registered in the instance of Arrowltem
and after that the arrow is added as PropertyChangeListener to the list of
PropertyChangeListenersassociated with each ArrowConnectable:

connection.addPropertyChangeListener(Diagramltem_.HAS BEEN_REMOVED, removedListener);

connection.addPropertyChangeListener(Diagramltem.LOCATION_PROPERTY,
locationListener);

connection.addPropertyChangeListener(Diagramltem.SIZE_PROPERTY, locationListener);

In this way, the arrow is updated as soon as one of the connected shapes changes its location, its
size or itsdirection, and the arrow is deleted after one of the connected shapes is deleted.

<< PropertyChangeSource >>

T BasicShapesGesturelnterpreter
<< ArrowConnectable >>
‘ ~
|
|
Polygonltem Arrowltem Lineltem
——— inherits ——= “hasa’relationship ______ > implements

<< interface >>

Figure 34. Classes involved in context-aware drawing.

V. Controlsfor selecting modes
The classesMode and EditorMode arein the package brainchild.editor.

To instantiate an instance of Mode, one must specify a string for tool tip, and three image files
which are presented for the cases that the mode is not the current one, the button for the mode is
pressed, and the mode is the current one.

The abstract class EditorMode inherits Mode, its subclasses represent different editor modes.
An editor mode can have several submodes, like DiagramEditorMode which has
DiagramBasicEditorMode and DiagramComplexEditorMode as its submodes. So
EditorMode isaclient of itself.

To sdect an editor mode, the user uses EditorSelectionControl and
DiagramTypeSelectionControl, if needed. They are implemented in the package
brainchild.ui.controls.

The abstract class SelectionControl is for selecting modes, it is circular, and it inherits
AbstractCircularControl. SelectionControl is responsible for the layout, and its
getter and setter methods can be called to get or set the current mode.

Using EditorSelectionControl one can switch between freehand drawing mode,
non-freehand drawing mode and text mode. All these modes are instances of EditorMode.
EditorSelectionControl inherits SelectionControl.

When non-freehand drawing mode is activated, an instance of
DiagramTypeSelectionControl is created. Using this control one can switch between
basic shape mode, complex shape mode and flow graph mode (the last one is not implemented in
the current project). All these modes are instances of EditorMode.
DiagramTypeSelectionControl inherits SelectionControl.

The classes with graphical rendering methods for the controls are implemented in the package
brainchild.ui.controls.plaf. They are AbstractCircularControlUl and
SelectionControlUl, thelatter inherits the former.

All the controls described above are put into the DashBoardPanel in the package
brainchild.ui.panels.

AbstractCircularControlUl |<<— AbstractCircularControl * Mode *
T = ‘
SelectionControlUlI SelectionControl * EditorMode *
Y- >
EditorSelectionControl DiagramTypeSelectionControl
h ==
DashBoardPanel
— inherits ——=> “has a” relationship * abstract class

Figure 35. Classes for selection controls.

V1. Controlsfor text mode

When text mode is activated, four circular controls pop up on the screen, they are
TextSmallLettersControl, TextBigLettersControl, TextNumbersControl
and TextPunctuationsControl, al of them are subclasses of the abstract class
TextControl. Each instance of TextControl has its own Sheet object with which an
interpreter for recognizing letters, numbers and punctuations is associated. These controls are
circular, they inherit AbstractCircularControl.

The classes with graphical rendering methods for the controls are implemented in the package
brainchild.ui.controls.plaf. They are AbstractCircularControlUl and
TextControlUl, thelatter inherits the former.

All the controls described above are put into the DashBoardPanel in the package
brainchild.ui.panels.

AbstractCircularControlUlI AbstractCircularControl *

| T

TextControlUI TextControl * Sheet

/ ‘ v

TextSmallLettersControl TextBigLettersControl

TextNumbersControl TextPunctuationsControl

DashBoardPanel

——» inherits ——=> “has a’ relationship * abstract class

Figure 36. Classes for text mode controls.

Results

The work so far has reached most of the intended results, however, there also exist severa bugs.
Following problems probably originate from SATIN’s implementation:

= Problemswith DiagramltemGroup resp. GOBGroup resp. GraphicalObjectGroup:

e StylingaDiagramltemGroup does not work. This problem results that when agroup is
selected, the transparency of the elements color cannot be set, so the user cannot
distinguish a selected group from an unselected group optically.

e When resizing or rotating aDiagramltemGroup, the Diagramltemsin the group are
not updated, so after ungrouping them, these individual Diagramltems return to the
original size or the original direction.

e Incase of agroup of DiagramltemGroups the method getCol lectionBound2D()
returns (0, 0) asthegroup’s upper left point, although the entire group stays rather in the
middle of the screen. This problem affects selection and desel ection.

e The clone() method of GraphicalObjectGrouplImpl is probably not correctly
implemented, a java.util.ConcurrentModificationException is thrown
when pasting aGraphicalObjectGroup.

A text area in text mode is an instance of GObJComponentWrapper implemented in
SATIN which is a wrapper for java swing's JComponents. The problem is that the author
must first add some letters, i.e. *-'s, to get an JTextArea object extend to the intended width,
and then pass it to the wrapper, otherwise the width of the JTextArea is aways zero, and
no characters can be added to it, in other words, the bound of a JTextArea does not change
when the user adds charactersto it, and it always only refersto thefirst line, as a consequence,
a text area can only be activated when the user left-clicks on the first line, and when it
becomes the current text area, only the first lineis highlighted with a yellow background.

The user first selects an element, then right-clicks in the selection area to get the pie-menu,
then closes the pie-menu, then the user right-clicks outside the selection area, then one can
observe that the selected element moves. The cause is that with the second right-click,
MoveSelectedInterpreter._handleNewStroke() is not called before
MoveSelectedInterpreter.handleUpdateStroke() is called, S0
iIsOverSelected = true isthevalue set during the first right-click, and this boolean flag
with the value true leads to the update of the element’s position.

Following problems have probably to do with the current implementation:

GobLine: In the current implementation, GobLine extends PatchlImpl provided by
SATIN, the problem with this approach is that in basic and complex shape modes, horizontal
and vertical lines are not output on the screen. To solve this problem, one can let GobLine
extend GraphicalObjectiImpl, but then it comes to the following problem:

GobEllipse, GobLine: In the current implementation, GobEllipse extends
GraphicalObjectiImpl provided by SATIN, the problem with this approach is that after
GraphicalObjectimpl.defaultRender () iscalled, the actual internal coordinate of
an GobEl I ipse resp. GobL 1ne object is not the same as the one observed on the screen.

Remarks

The author had underestimated the time and effort she needed to complete the project. So redo and
undo operations for the diagram editor had to be canceled due to lack of time.

The main reason for the underestimation was that the framework SATIN was a totally new field
for the author, and it took her some time to get familiar with, considering that most classes,
including their fields and methods, were not well documented and there also exist several bugs
with SATIN’s implementation. Another time-consuming work was to calculate coordinates of
intersection points, connection points for arrows, and something like that.

References

[1] SATIN - A Toolkit for Informal Ink-based Applications; Online at:
http://exuma.cs.berkel ey.edu/projects/satin/, consulted in July — October 2006.

[2] The Java™ Tutorials, Trail: 2D Graphics; Online at:
http://java.sun.com/docs/books/tutorial/2d/index.html, consulted in July — October 2006.

